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PREFACE 

This manual is intended to be used along with The Art of Electronics by Horowitz and 
Hill (Cambridge University Press, New York, 2d ed. 1989) in an introductory electronics 
course. The manual includes three principal elements: 

• laboratory exercises: 23 of these, each meant to occupy a 3-hour lab period; each 
set of laboratory notes except the last includes a reading assignment in the Text; 

• explanatory notes: one for each laboratory exercise or class; 

• worked examples: a total of 20: approximately one for each reading assignment. 

In addition, we have included some reference materials: 

• a glossary of frequently-used terms and jargon; 

• review notes for each chapter, noting the most important circuits and topics; 

• selected data sheets, analog and digital. 

The students this course might suit 

These notes arose out of a course at Harvard; they define what we try to teach in that busy 
term. The course does less than all of Horowitz and Hill, of course. We treat chapters 1-11, 
omitting Chapter 7, on Precision Circuits ... , which is more specialized than the rest, and 
skimming Chapter 4 on Active Filters and Oscillators. Even this selection includes more 
information than we expect students to absorb fully on a first pass through the book. This 
Manual tries to guide students to the most important material. 

The typical student that we see-if there really is a typical student-is an undergraduate 
majoring in Physics, and wanting to learn enough electronics to let him or her do useful 
work in a laboratory. But we do not assume such background in these notes. Students very 
different from that typical student thrive in our course. Graduate students in the sciences 
appear regularly; during the summer we see many high school students, and some of these 
do brilliantly; now and then a professor of Physics takes the course (and they do all right, 
too!). In the 'extension' version of the course, we see lots of programmers who want to 
know what's going on in their machines, and we see people who just happen to be curious 
about electronics. That curiosity, in fact, is the only prerequisite for this course, and 
suggests the only good rule to define who will enjoy it. Someone looking for an 
engineering course will find our treatment oddly informal, but a person eager to learn how 
to design useful circuits will like this course. 

Laboratory Exercises 

The laboratory exercises build upon a set of labs that were set out in the 1981 edition of 
the Laboratory Manual, by Horowitz and Robinson. The new exercises replace all of the 
original digital labs and substantially revise the analog labs on PET's and oscillators. In the 
digital section we have switched over from LSTTL to HCMOS, but the major change has 
been the enlarged role given to the microprocessor labs, and the shift from the Z80 
processor programmed rather laboriously via a DIP switch to a 68008 processor 
programmed through a keypad. (A complete schematic is included. See Lab 15. Complete 
keypad units are available through the authors. See Parts list). 

We have held to our intention that students should build their computer from the chip 
level, and that they should not be handed a ROM cleverly programmed by someone else. 
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We want our students to feel that they know their computer intimately, and that it is fully 
their product. 

The digital half of the course now centers on the microcomputer: we meet simpler digital 
devices-gates, flip-flops, counters, memory-partly because we want to be able to build 
small digital circuits, but also partly in order to understand the full microcomputer circuit. 
To put this point another way, the final series of labs, in which the microcomputer gradually 
takes form, draws together every one of the several circuit elements met earlier: 
combinational logic networks, flip-flop circuits, counters, memory, and analog/digital 
conversion. The A-D conversion experiments have been expanded to include the effects of 
sampling-rate and of filters applied to input and output. 

Notes 

The notes that introduce each lab respond to two needs that students often voice: 

• The notes select a few points from the much broader coverage of the Text; those 
selected points are, of course, those that we think most important to a student 
meeting practical electronics for the first time. 

• The notes explain at length. They do this at a level more basic than the Text's, and 
they provide explanations in a step-by-step style that the Text cannot afford, given 
its need to cover far more material. 

A suggestion: how to use the notes 

Here's a proposal; you will, of course, find your own way to use Text, Notes and all the 
other course materials. But here is one way to begin. 

• Start by reading the day's assignment in the Text. It will include some material 
that is subtler than what we expect you to pick up in a first course. You may want 
to hear some points restated in another way, or you may want to see an example 
worked. Primed with this specific sort of curiosity, you might then-

• Look at the day's Notes and Lab: scan, first, to see which circuits and which points 
are selected. Read the Notes on any points that puzzled you; if you still are 
puzzled, return to the Text for a second look at the topics you now know are most 
important. 

• Skip topics in the Notes that you understand already. The Notes are meant to help 
you, not to burden you with additional reading: if you have read and understood the 
Text's discussion of a topic, you will miss nothing by omitting the corresponding 
section in the Notes. 

• Try the day's worked example, at least in your head. If it looks easy, you may 
want to skip it. If it looks hard, probably you should try to do your own solution. 
If you find yourself heading into a lot of work-especially any involved 
calculations-probably you are doing unnecessary labor, and it is time to peek at 
our solution. We hope to teach you an approach to problems of circuit design, not 
just a set of particular rules. If there is a laborious way and a quick way to reach a 
good design, we want to push you firmly toward the quick way. 

We expect that some of these notes will strike you as babyish, some as excessively dense: 
your reaction naturally reflects the uneven experience you have had with the topics the Text 
and Manual treat. Some of you are sophisticated programmers, and will sail through the 
assembly-language programming near the course's end; others will find it heavy going. 
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That's all right. The course out of which this Manual grew-and, earlier, the Text as 
well-has a reputation as fun, and not difficult in one sense, but difficult in another: the 
concepts are straightforward; abstractions are few. But we do pass a lot of information to 
our students in a short time; we do expect them to achieve literacy rather fast. This course 
is a lot like an introductory language course, and we hope to teach by the method sometimes 
called immersion. It is the laboratory exercises that do the best teaching; we hope the Text 
and this Manual will help to make those exercises instructive. 

Why our figures and text look the way they do 

You will discover very quickly that this manual is informal in language and layout. The 
figures all are hand-drawn. They are done by hand partly because we like the look of hand
drawn figures (when they are done right; not all our figures are pretty), and partly because 
we want to encourage students to do their own free-hand drafting of schematics. In some 
cases we did draft drawings on a computer, then drew the final versions by hand! The text 
was produced as camera-ready copy, put out by an ordinary PC word processor. So-as 
writers used to say, long ago-dear reader, look with sympathy, if you can, when you find a 
typo, or a figure drawn amiss. Don't blame the publisher for corporate sloth. Picture, 
instead, two fellows hunched over their keyboard and drawing board, late at night and 
beginning to get drowsy. 

Who helped especially with this book 

Two teaching fellows gave us good advice on uncounted occasions: Shahn Majid, a 
mathematical Physicist who taught with us for years in the Harvard College course, and 
Steve Morss, a digital engineer who once took the course and then returned to teach. Steve 
often would linger late into the night helping to try out a new circuit or analyze an old one. 
Both of these two could perfectly well have taught the course, and chose nevertheless to 
linger-Bodhissattva-like-giving their expert help in this quieter way. 

A pair of our former students, Jeff Hobson and Wei-Jing Zhu, helped us first by drawing 
figures-and then gradually turned into this book's godparents, helping in all sorts of ways. 
Often they would arrive in the evening, at the end of a long day's work, and then would 
labor to help us organize, check, re-check-and also to make judgments on how to make 
our points clearly. Often the end of the workday was defined by the departure of the last 
bus, at 1:00 in the morning. Their devotion to the project was invaluable, and touching. 

Finally, Debbie Mills deserves thanks for putting up with her husband Tom's strange, 
long hours, and then, toward the end, doing much more: providing essential help in 
organizing, checking, and correcting the growing stacks of printouts and drawings. 

Cambridge, Mass. 
July 1989 

Tom Hayes 
Paul Horowitz 
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CHAPTER I 

Overview 
The title of this first chapter, "Foundations," describes its place pretty well: here you will 

learn techniques that will underlie circuitry that later produces impressive results. Chapter 
1 's circuits are humbler than what you will see later, and the devices you meet here are 
probably more familiar to you than, say, transistors, operational amplifiers-or 
microprocessors: Ohm's Law will surprise none of you; I= C dV/dt probably sounds at least 
vaguely familiar. 

But the circuit elements that this chapter treats-passive devices-appear over and over 
in later active circuits. So, if a student happens to tell us, 'I'm going to be away on the day 
you're doing Lab 2,' we tell him he will have to make up the lab somehow: that the second 
lab, on RC circuits, is the most important in the course. If you do not use that lab to cement 
your understanding of RC circuits-especially filters-then you will be haunted by muddled 
thinking for at least the remainder of analog part of the course. 

Resistors will give you no trouble; diodes will seem simple enough, at least in the view 
that we settle for: they are one-way conductors. Capacitors and inductors behave more 
strangely. We will see very few circuits that use inductors, but a great many that use 
capacitors. You are likely to need a good deal of practice before you get comfortable with 
the central facts of capacitors' behavior-easy to state, hard to get an intuitive grip on: they 
pass AC, block DC, and sometimes cause large phase shifts. 

We should also restate a word of reassurance offered by the Text (p. 29), but seldom 
believed by students: you can manage this course perfectly even if you cannot follow the 
mathematical arguments that begin in sec. 1.18 (use of complex quantities to represent 
voltage and current), and even if, after reading the spectacularly-dense Math Review in 
appendix B you feel that you must be spectacularly dense. This is the place in the Text and 
course where the squeamish usually begin to wonder if they ought to retreat to some 
slower-paced treatment of the subject. Do not give up at this point; hang on until you have 
seen transistors, at least. The mathematical arguments of 1.18 are not at all characteristic of 
this Text or of this course. To the contrary, one of the most striking qualities of this Text is 
its cheerful evasion of complexity whenever a simpler account can carry you to a good 
design. The treatment of transistors offers a good example, and you ought to stay with the 
course long enough to see that: the transistor chapter is difficult, but wonderfully simpler 
than most other treatments of the subject. You will begin designing useful transistor circuits 
on your first day with the subject. 

It is also in the first three labs that you will get used to the lab instruments-and 
especially to the most important of these, the oscilloscope. It is a complex machine; only 
practice will teach you to use it well. Do not make the common mistake of thinking that the 
person next to you who is turning knobs so confidently, flipping switches and adjusting 
trigger level-all on the first day of the course-is smarter than you are. No, that person 
has done it before. In two weeks, you too will be making the scope do your 
bidding-assuming that you don't leave the work to that person next to you-who knew it 
all from the beginning. 

The images on the scope screen make silent and invisible events visible, though strangely 
abstracted as well; these scope traces will become your mental images of what happens in 
your circuits. The scope will serve as a time microscope that will let you see events that last 
a handful of nanoseconds: the length of time light takes to get from you to the person sitting 
a little way down the lab bench. You may even find yourself reacting emotionally to shapes 
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on the screen: feeling good when you see a smooth, handsome sine wave; disturbed when 
you see the peaks of the sine clipped, or its shape warped; annoyed when fuzz grows on 
your waveforms. 

Anticipating some of these experiences, and to get you in the mood to enjoy the coming 
weeks in which small events will paint their self-portraits on your screen, we offer you a 
view of some scope traces that never quite occurred, and that nevertheless seem just about 
right: just what a scope would show if it could. This drawing has been posted on one of our 
doors for years, now, and students who happen by pause, peer, hesitate--evidently working 
a bit to put a mental frame around these not-quite-possible pictures; sometimes they ask if 
these are scope traces. They are not, of course; the leap beyond what a scope can show was 
the artist's: Saul Steinberg's. Graciously, he has allowed us to show his drawing here. We 
hope you enjoy it. Perhaps it will help you to look on your less exotic scope displays with a 
little of the respect and wonder with which we have to look on the traces below. 
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Figure INI.l: Drawing by Saul Steinberg; copyright 1979 The New Yorker Magazine, Inc. 



Class 1: DC Circuits 
Topics: 

• What this course treats: Art? of Electronics 
DC circuits 
Today we will look at circuits made up entirely of 
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DC voltage sources (things whose output voltage is constant over time; 
things like a battery, or a lab power supply); 
and 
resistors. 

Sounds simple, and it is. We will try to point out quick ways to handle these familiar circuit 
elements. We will concentrate on one circuit fragment, the voltage divider. 

Preliminary: What is "the art of electronics?" 

Not an art, perhaps, but a craft. Here's the Text's formulation of what it claims to teach: 

... the laws, rules of thumb, and tricks that constitute the art of electronics as 
we see it. (P. 1) 

As you may have gathered, if you have looked at the text, this course differs from an 
engineering electronics course in concentrating on the "rules of thumb" and the "tricks." 
You will learn to use rules of thumb and reliable tricks without apology. With their help 
you will be able to leave the calculator-bound novice engineer in the dust! 

Two Laws 
Text sec. 1.01 

First, a glance at two laws: Ohm's Law, and Kirchhoff's Laws (V,I). 

We rely on these rules continually, in electronics. Nevertheless, we rarely will mention 
Kirchhoff again. We use his observations implicitly. We will see and use Ohm's Law a lot, 
in contrast (no one has gotten around to doing what's demanded by the bumper sticker one 
sees around MIT: Repeal Ohm's Lawl) 

Ohm's Law: E = IR 

E (old-fashioned term for voltage) 
is analog of water pressure or 'head' of water 

R describes the restriction of flow 

1 is the rate of flow (volume/unit time) 

Figure Nl.l: Hydraulic analogy: voltage as head of water, etc. Use it if it helps your intuition 

The homely hydraulic analogy works pretty well, if you don't push it too far-and if you're 
not too proud to use such an aid to intuition. 
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Ohm's is a very useful rule; but it applies only to things that behave like resistors. What 
are these? They are things that obey Ohm's Law! (Sorry folks: that's as deeply as we'll 
look at this question, in this course1.) 

We begin almost at once to meet devices that do not obey Ohm's Law (see Lab 1: a lamp; 
a diode). Ohm's Law describes one possible relation between V and I in a component; but 
there are others. 

As the text says, 

Crudely speaking, the name of the game is to make and use gadgets that have 
interesting and useful I vs V characteristics. (P. 4) 

Kirchhoff's Laws (V,I) 

These two 'laws' probably only codify what you think you know through common sense: 

Sum of voltages around loop 
(circuit) is zero. 

r~ 

Sum of currents in & out 
of node is zero 

(algebraic sum, of course). 
Figure N1.2: Kirchhoff's two laws 

Applications of these laws: series and parallel circuits 

r-
\.i I1l 1?1 
~ 
,------. 

\-2 lzl T<z 

"----+ 

Series: /tota; = /1 = /2 

vtotal =vi+ V2 
(current same 
everywhere; 
voltage divides) 

Parallel: /total= ! 1 + /2 

vtotal = VI = v2 
(voltage same across 
all parts; current 
divides) 

Figure NL3: Applications of Kirchhoff's laws: Series and parallel circuits: a couple of truisms, probably familiar to you 
already 

Query: Incidentally, where is the "loop" that Kirchhoff's law refers to? 

This is kind of boring. So, let's hurry on to less abstract circuits: to applications-and 
tricks. First, some labor-saving tricks. 

1. If this remark frustrates you, see an ordinary E & M book; for example, see the good discussion of the topic in E. M. Purcell, 
Electricity & Ma~:netism, cited in the Text (2d ed., 1985), or inS. Bums & P. Bond, Principles of Electronic Circuits (1987). 
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Parallel Resistances: calculating equivalent R 
The conductances add: 
conductancetotal = conductance1 + conductanc~ = l/R1 + l!R2 

Figure N1.4: Parallel resistors: the conductances add; unfortunately, the resistances don't 

5 

This is the easy notion to remember, but not usually convenient to apply, for one rarely 
speaks of conductances. The notion "resistance" is so generally used that you will 
sometimes want to use the formula for the effective resistance of two parallel resistors: 

Rtot = Rr Rz I (Rr + Rz) 

Believe it or not, even this formula is messier than what we like to ask you to work with in 
this course. So we proceed immediately to some tricks that let you do most work in your 
head. 

Text sec. 1.02 

Consider some easy cases: 

R. R. 

two equal R's 

!OR 

two very unequal R's 
Figure Nl.S: Parallel R's: Some easy cases 

2£ 

R,2R 

The first two cases are especially important, because they help one to estimate the effect 
of a circuit one can liken to either case. Labor-saving tricks that give you an estimate are 
not to be scorned: if you see an easy way to an estimate, you're likely to make the estimate. 
If you have to work to hard to get the answer, you may find yourself simply not making the 
estimate. 

In this course we usually are content with answers good to 10%. So, if two parallel 
resistors differ by a factor of ten, then we can ignore the larger of the two. 

Let's elevate this observation to a rule of thumb (our first). While we're at it, we can 
state the equivalent rule for resistors in series. 

Parallel resistances: shortcuts 

In a parallel circuit, a resistor much smaller than others dominates. 
In a series circuit, the large resistor dominates. 

Figure Nl.6: Resistor calculation shortcut: parallel, series 

s"'aJL R 
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Voltage Divider 
Text sec. 1.03 

Class 1: DC Circuits 

JOv 

Figure N1.7: Voltage divider 

At last we have reached a circuit that does something useful. 

Nl-4 

First, a note on labeling: we label the resistors "10k"; we omit "Q." It goes without 
saying. The "k" means kilo- or 103, as you probably know. 

One can calculate Vout in several ways. We will try to push you toward the way that 
makes it easy to get an answer in your head. 

Three ways: 

1. Calculate the current through the series resistance; use that to calculate the voltage in the 
lower leg of the divider. 

11, 

Vout 

I= Vin I (R1 + R2) 

Here, that's 30v I 20k.Q = 1.5 rnA 
Vout =I·R2 
Here, that's 1.5 rnA ·lOk = 15 v 

Figure N1.8: Voltage divider: first method (too hard!): calculate current explicitly 

That takes too long. 

2. Rely on the fact that I is constant in top and bottom, but do that implicitly. If you want 
an algebraic argument, you might say, 

+3ov 

or, 

In this case, that means 
Vout = Vrn (10k/20k) = Vrn/2 7 

Figure N1.9: Voltage divider: second method: (a little better): current implicit 

That's much better, and you will use formula (1) fairly often. But we would like to push 
you not to memorize that equation, but instead to-
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3. Say to yourself in words how the divider works: something like, 

Since the currents in top and bottom are equal, the voltage drops are 
proportional to the resistances (later, impedances-a more general notion 
that covers devices other than resistors). 

7 

So, in this case, where the lower R makes up half the total resistance, it also will show 
half the total voltage. 

For another example, if the lower leg is 10 times the upper leg, it will show about 90% of 
the input voltage (10/11, if you're fussy, but 90%, to our usual tolerances). 

Loading, and "output impedance" 
Text sec.1.05, 

Now-after you've calculated Vout for the divider-suppose someone comes along and puts 
in a third resistor: 

Text exercise 1.9 
30v 

1ok 
"load" 

Figure Nl.IO: Voltage divider loaded 

(Query: Are you entitled to be outraged? Is this no fair?) Again there is more than one way 
to make the new calculation-but one way is tidier than the other. 

Two possible methods: 

1. Tedious Method: 
Text exercise 1.19 

Model the two lower R's as one R; calculate Vout for this new voltage divider: 
Jov 

..-..... ---. v.ut = Vout The new divider delivers 1/3 V;n 

!ok 1ok 

"":" 7 

Figure Nl.ll: Voltage divider loaded: load and lower R combined in model 

That's reasonable, but it requires you to draw a new model to describe each possible 
loading. 
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2. Better method: Thevenin's. 
Text sec. 1.05 

Thevenin Model 

Thevenin's good idea: 

2ov 

Rz 

Model the actual circuit (unloaded) with a simpler 
circuit-the Thevenin model-which is an idealized 
voltage source in series with a resistor. One can then 
see pretty readily how that simpler circuit will behave 
under various loads. 

Rr.,.v. 5
R1U~ 

cr-;_ 
v.,-n-circuit . 

(no load.) 

Figure Nl.l2: Thevenin Model: perfect voltage source in series with output resistance 

Here's how to calculate the two elements of the Thevenin model: 

VTitcvcnin: 

RThcvcnin: 

Just vopen circuit: the voltage out when nothing is attached 
("no load") 

Defined as the quotient of VThevenin I !short-circuit• which is the 
current that flows from the circuit output to ground if you 
simply short the output to ground. 

In practice, you are not likely to discover RThev by so brutal an experiment; and if you 
have a diagram of the circuit to look at, there is a much faster shortcut: 

Shortcut calculation of Erhev 
Given a circuit diagram, the fastest way to calculate RThev is to see it as the 
parallel resistance of the several resistances viewed from the output. 

\.'J·n ---., 
;> 

Rt S 
..___ 
?-

R2 > 

=-
Figure N1.13: Rn,., = R 1 parallel R2 

(This formulation assumes that the voltage sources are ideal, incidentally; 
when they are not, we need to include their output resistance. For the 
moment, let's ignore this complication.) 
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You saw this result above, but this still may strike you as a little odd: why should R1, going 
up to the positive supply, be treated as parallel to R2? Well, suppose the positive supply 
were set at 0 volts. Then surely the two resistances would be in parallel, right? 

Or suppose a different divider (chosen to make the numbers easy): twenty volts divided 
by two lOk resistors. To discover the impedance at the output, do the usual experiment (one 
that we will speak of again and again): 

A general definition and procedure to determine impedance at a point: 

+ 20V 

'Y>o load 

To discover the impedance at a point: 

apply a ~V; find M. 

The quotient is the impedance 

+2ov 

He)f The books dbn·l: 
f.yJ./anre fl DtJn't tell 

-:- Mr. 1<1/-c.hho f 
~ .6V= -+tv 

+o oufput +ermina ( 
Figure N1.14: Hypothetical divider: current= 1 rnA; apply a wiggle of voltage, D.V; sec what tJ.I results 

In this case 1 rnA was flowing before the wiggle. After we force the output up by 1 v, the 
currents in top and bottom resistors no longer match: upstairs: 0.9 rnA; downstairs, 1.1 rnA 
The difference must come from you, the wiggler. 

Result: impedance = ~VIM = 1 v I 0.2 rnA = 5 k 
And-happily-that is the parallel resistance of the two R's. Does that argument make the 
result easier to accept? 

You may be wondering why this model is useful. Here is one way to put the answer, 
though probably you will remain skeptical until you have seen the model at work in several 
examples: Any non-ideal voltage source "droops" when loaded. How much it droops 
depends on its "output impedance". The Thevenin equivalent model, with its RThcvcnin• 

describes this property neatly in a single number. 

Applying the Thevenin model 
First, let's make sure Thevenin had it right: let's make sure his model behaves the way 

the original circuit does. We found that the IOk, IOk divider from 30 volts, which put out 
15v when not loaded, drooped to lOY under a lOk load. Does the model do the same? 

3ov 

-· -io-k'-. 
Rto«!.) 

Figure Nl.IS: Thcvenin model and load: droops as original circuit drooped 
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Yes, the model droops to the extent the original did: down to 10 v. What the model provides 
that the original circuit lacked is that single value, Rrhev• expressing how droopy/stiff the 
output is. 

If someone changed the value of the load, the Thevenin model would help you to see 
what droop to expect; if, instead, you didn't use the model and had to put the two lower 
resistors in parallel again and recalculate their parallel resistance, you'd take longer to get 
each answer, and still you might not get a feel for the circuit's output impedance. 

Let's try using the model on a set of voltage sources that differ only in Rrhev· At the same 
time we can see the effect of an instrument's input impedance. 

Suppose we have a set of voltage dividers, dividing a 20v input by two. Let's assume 
that we use 1% resistors (value good to ±1 %). 

2ov 2ov 'UJv 2ov 2ov 

valtrnehr 

~ lk - -_,_-[j 
la 'Je 1(/; ------------ s,an R.'s 

Figure l'i1.16: A set of similar voltage dividers: same V111, differing RTh's 

Vrhev is obvious, and is the same in all cases. RTh evidently varies from divider to divider. 
Suppose now that we try to measure Vout at the output of each divider. If we measured 

with a peifect voltmeter, the answer in all cases would be lOv. (Query: is it lO.OOOv? 
lO.Ov?) 

But if we actually perform the measurement, we will encounter the Rin of our imperfect 
lab voltmeters. Let's try it with a YOM ("volt-ohm-meter," the conventional name for the 
old-fashioned "analog" meter, which gives its answers by deflecting its needle to a degree 
that forms an analog to the quantity measured), and then with a DVM ("digital voltmeter," a 
more recent invention, which usually can measure current and resistance as well as voltage, 
despite its name; both types sometimes are called simply "multimeters"). 

Suppose you poke the several divider outputs, beginning from the right side, where the 
resistors are lkQ. Here's a table showing what we find, at three of the dividers: 

R values, divider 

lk 
lOk 
lOOk 

Measurcdy_ 

9.95 
9.76 
8.05 

Inference 

within R tolerance 
loading barely apparent 
loading obvious 

The 8.05 v reading shows such obvious loading-and such a nice round number, if we treat 
it as "8 v"-that we can use this to calculate the meter's Rin without much effort: 

+20v 

= 

7 

Figure :\'1.17: YOM reading departs from ideal; we can infer Rin.VO:vt 
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As usual, one has a choice now, whether to pull out a formula and calculator, or whether to try, 
instead, to do the calculation "back-of-the-envelope" style. Let's try the latter method. 

First, we know that RThev is lOOk parallel lOOk: 50k. Now let's talk our way to a solution (an 
approximate solution: we'll treat the measured vout as just "8 volts": 

The meter shows us 8 parts in 10; across the divider's Rrhev (or call it "Rout'') we 
must be dropping the other 2 parts in 10. The relative sizes of the two resistances 
are in proportion to these two voltage drops: 8 to 2, so Rin-VOM must be 4 • RThev: 
200k. 

If we squint at the front of the VOM, we'll find a little notation, 
20,000 ohms/volt 

That specification means that if we used the meter on its 1 V scale (that is, if we set things so that 
an input of 1 volt would deflect the needle fully), then the meter would show an input resistance 
of 20k. In fact, it's showing us 200k. Does that make sense? It will when you've figured out 
what must be inside a VOM to allow it to change voltage ranges: a set of big series resistors. 
You'll understand this fully when you have done problem 1.8 in the text; for now, take our word 
for it: our answer, 200k, is correct when we have the meter set to the 10 V scale, as we do for this 
measurement. 

This is probably a good time to take a quick look at what's inside a multimeter-VOM or 
DVM: 
How a meter works: 

Depends on type. 
-depends whether the basic works of the meter sense current or voltage. 

+ analog: senses current ro/,fe~ 

Figure N1.18: Analog meter senses current, in its guts 

+ digital: senses voltage 

Figure N1.19: Digital meter senses voltage, in its innards 

The VOM specification, 20,000 ohms/volt, describes the sensitivity of the meter movement-the 
guts of the instrument. This movement puts a fairly low ceiling on the YOM's input resistance at 
a given range setting. 
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Let's try the same experiment with a DVM, and let's suppose we get the following readings: 
R values, divide 

lOOk 
1M 
10M 

Measured Vout 

9.92 
9.55 
6.69 

+2ov 

Inference 

within R tolerance 
loading apparent 
loading obvious 

Figure N1.20: DVM reading departs from ideal; we can infer Rin-DVM 

Again let's use the case where the droop is obvious; again let's talk our way to an answer: 

This time Rrh is 5M; we're dropping 2/3 of the voltage across Rin-DVM• l/3 across 
Rrh· So, Rin-DVM must be 2•Rrh• or 10M. 

If we check the data sheet for this particular DVM we find that its Rin is specified to be"~ 10M, 
all ranges." Again our readings make sense. 

VOM vs DVM: a conclusion? 
Evidently, the DVM is a better voltmeter, at least in its Rin-as well as much easier to use. As 

a current meter, however, it is no better than the YOM: it drops 1/4 v full scale, as the YOM does; 
it measures current simply by letting it flow through a small resistor; the meter then measures the 
voltage across that resistor. 

Digression on ground 
The concept "ground" ("earth," in Britain) sounds solid enough. It turns out to be ambiguous. 

Try your understanding of the term by looking at some cases: 

A 8 

1ok 

Figure N1.21: Ground in two senses 

Query: what is the resistance between points A and B? (Easy, if you don't think about it too 
hard.) We know that the ground symbol means, in any event, that the bottom ends of the two 
resistors are electrically joined. Does it matter whether that point is also tied to the pretty planet 
we live on? It turns out that it does not. 
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And where is "ground" in this circuit: -------..... 
'?ower Supply 

Figure N1.22: Ground in two senses, revisited 

Local ground is what we care about: the common point in our circuit that we arbitrarily 
choose to call zero volts. Only rarely do we care whether or not that local reference is tied 
to a spike driven into the earth. But, be warned, sometimes you are confronted with lines 
that are tied to world ground-for example, the ground clip on a scope probe, and the 
"ground" of the breadboards that we use in the lab; then you must take care not to clip the 
scope ground to, say, + 15 on the breadboard. 

Generalizing what we've learned of Rin and Rout 

The voltage dividers whose outputs we tried to measure introduced us to a problem we 
will see over and over again: some circuit tries to "drive" a load. To some extent, the load 
changes the output. We need to be able to predict and control this change. To do that, we 
need to understand, first, the characteristic we call Rin (this rarely troubles anyone) and, 
second, the one we have called Rrhevenin (this one takes longer to get used to). Next time, 
when we meet frequency-dependent circuits, we will generalize both characteristics to "Zin" 

and "Zout·" 

Here we will work our way to another rule of thumb; one that will make your life as 
designer relatively easy. We start with a goal: Design goal: When circuit A drives circuit 
B: arrange things so that B loads A lightly enough to cause only insignificant attenuation of 
the signal. And this goal leads to the rule of thumb: 

Design rule of thumb: 

When circuit A drives circuit B: 

Let R for A be~ 1!10 Rin forB 
out 

~ . . 

Figure N1.23: Circuit A drives circuit B 

How does this rule get us the desired result? Look at the problem as a familiar voltage 
divider question. If RoutA is much smaller than RinB• then the divider delivers nearly all of 
the original signal. If the relation is 1 : 10, then the divider delivers 10!11 of the signal: 
attenuation is just under 10%, and that's good enough for our purposes. 

We like this arrangement not just because we like big signals. (If that were the only 
concern, we could always boost the output signal, simply amplifying it.) We like this 
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-'~ .:.:-:;ement above all because it allows us to design circuit-fragments independently: we 
,·_,:> cesign A, then design B, and so on. We need not consider A,B as a large single circuit. 
That· s good: makes our work of design and analysis lots easier than it would be if we had to 
treat every large circuit as a unit. 

An example, with numbers: What Rrhev for droop of< 10%? What R's, therefore? 

tok 

oue, B 

Figure Nl.24: One divider driving another: a chance to apply our rule of thumb 

The effects of this rule of thumb become more interesting if you extend this chain: from A 
and B, on to C. 

A B c 
r--- 'I 1?1;,~? r-- -'I r--- '\ 
I I - I 

v.-~ 
I 

I 4k 11ok 1 2Sk 

-I I 'Rovt=? I 

I 4k 11ok I I.?Sk 
I I I I 
\._ _./ '-- --' \._ --' 

'7 ~ -:-

Figure N1.25: Extending the divider: testing the claim that our rule of thumb lets us consider one circuit fragment at a time 

As we design C, what Rrhev should we use forB? Is it just lOK parallel lOK? That's the 
answer if we can consider B by itself, using the usual simplifying assumptions: source ideal 
(Rout= 0) and load ideal (Rin infinitely large). 

But should we be more precise? Should we admit that the upper branch really looks like 
10K + 2K: 12k? Oh dear! That's 20% different. Is our whole scheme crumbling? Are we 
going to have to look all the way back to the start of the chain, in order to design the next 
link? Must we, in other words, consider the whole circuit at once, not just the fragment B, 
as we had hoped? 

No. Relax. That 20% error gets diluted to half its value: Rrhev forB is 1 Ok parallell2k, 
but that's a shade under 5.5k. So--fumes of relieft-we need not look beyond B. We can, 
indeed, consider the circuit in the way we had hoped: fragment by fragment. 

If this argument has not exhausted you, you might give our claim a further test by looking 
in the other direction: does C alter B's input resistance appreciably (>10%)? You know the 
answer, but confirming it would let you check your understanding of our rule of thumb and 
its effects. 
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Five worked examples: 

1. Design a voltmeter and ammeter from bare meter movement 

2. Effects of instrument imperfections, in first lab (Ll-1) 
3. Thevenin models 

4. Rin' Rout 

5. Effect of loading 

1. Design a Voltmeter, Current Meter 
Text sec. 1.04, 
ex. 1.8, p. 10 

Problem: Modify a meter movement to form a voltmeter and ammeter 

A 50~1A meter movement has an internal resistance of Sk. 
What shunt resistance is needed to convert it to a 0-1 amp 
meter? What series resistance will convert it to a 0-10 volt 
meter? 
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This exercise gives you a useful insight into the instrument, of course, but it also will give 
you some practice in judging when to use approximations: how precise to make your 
calculations, to say this another way. 

1 amp meter 

"SO~A meter movement" means that the needle deflects fully when SO~A flows through 
the movement (a coil that deflects in the magnetic field of a permanent magnet: see Class 1 
notes for a sketch). The remaining current must bypass the movement; but the current 
through the movement must remain proportional to the whole current. 

Such a long sentence makes the design sound complicated. In fact, as probably you have 
seen all along, the design is extremely simple: just add a resistance in parallel with the 
movement (this is the "shunt" mentioned in the problem): 

----? 1 A -SOp A-. 

Figure XI. I: Shunt resistance allows sensitive meter movement to measure a total current of 1 A 

What value? 

Well, what else do we know? We know the resistance of the meter movement. That 
characteristic plus the full-scale current tell us the full-scale voltage drop across the 
movement: that's 

V movement(full-scale) =/full-scale • Rmovement = 50 J.lA •SkQ =250m V 

Now we can choose Rshunt' since we know current and voltage that we want to see across the 
parallel combination. At this point we have a chance to work too hard, or instead to use a 
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sensible approximation. The occasion comes up as we try to answer the question, 'How 
much current should pass through the shunt?' 

One possible answer is 'lA less 50!1A, or 0.99995 A." 

Another possible answer is 'lA.' 
Which do you like? If you're fresh from a set of Physics courses, you may be inclined 

toward the first answer. If we take that, then the resistance we need is 
R = Vrull-scale llrull-scale = 250 mY /0.99995A =0.25001250 

Now in some settings that would be a good answer. In this setting, it is not. It is a very 
silly answer. That resistor specification claims to be good to a few parts in a million. If that 
were possible at all, it would be a preposterous goal in an instrument that makes a needle 
move so we can squint at it. 

So we should have chosen the second branch at the outset: seeing that the 501-lA 
movement current is small relative to the the lA total current, we should then ask ourselves, 
'About how small (in fractional or percentage terms)?' The answer would be '50 parts in a 
million.' And that fraction is so small relative to reasonable resistor tolerances that we 
should conclude at once that we should neglect the 50!1A. 

Neglecting the movement current, we find the shunt resistance is just 250mY/lA = 250 
mQ. In short, the problem is very easy if we have the good sense to let it be easy. You will 
find this happening repeatedly in this course: if you find yourself churning through a lot of 
math, and especially if you are carrying lots of digits with you, you're probably overlooking 
an easy way to do the job. There is no sense carrying all those digits and then having to 
reach for a 5% resistor and 10% capacitor. 

Voltmeter 
Here we want to arrange things so that lOY applied to the circuit causes a full-scale 

deflection of the movement. Which way should we think of the cause of that 
deflection-'501-lA flowing,' or '250 mY across the movement?' 

Either is fine. Thinking in voltage terms probably helps one to see that most of the lOY 
must be dropped across some element we are to add, since only 0.25Y will be dropped 
across the meter movement. That should help us sketch the solution: 

'"~ 
+--- 9.7~v__,. ~o.2.S"V4 

Figure X1.2: Voltmeter: series resistance needed 

What series resistance should we add? There are two equivalent ways to answer: 

1. The resistance must drop 9.75 volts out of 10, when 501-lA flows; so R = 
9.75Y/50!1A = 195kQ 

2. Total resistance must be lOY /501-lA = 200kQ. The meter movement looks like Sk, 
we were told; so we need to add the difference, 195kQ. 

If you got stung on the first part of this problem, giving an answer like "0.2500125Q," then 
you might be inclined to say, 'Oh, 501-lA is very small; the meter is delicate, so I'll neglect 
it. I'll put in a 200k series resistor, and be just a little off.' 

Well, just to keep you off-balance, we must now push you the other way: this time, 
"SO!lA," though a small current is not negligibly small, because it is not to be compared 
with some much larger current. On the contrary, it is the crucial characteristic we need to 
work with: it determines the value of the series resistor. And we should not say '200k is 
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close enough,' though 195k is the exact answer. The difference is 2.5%: much less than 
what we ordinarily worry about in this course (because we need to get used to components 
with 5 and 10% tolerances); but in a meter it's surely worth a few pennies extra to get a 1% 
resistor: a 195k. 

2. Lab 1-1 questions: working around imperfections of instruments 

The very first lab exercise asks you to go through the chore of confirming Ohm's Law. 
But it also confronts you at once with the difficulty that you cannot quite do what the 
experiment asks you to do: measure I and V in the resistor simultaneously. Two placements 
of the DVM are suggested (one is drawn, the other hinted at): 

VA~IABLf" 

POWeR, 
SuPPL.\' 

0-2o v 

0-20 v 
]!IGJTIIL 

VOLI11ETER 
+ -

2ok 

Figure X1.3: Lab 1-1 setup: DVM and YOM cannot both measure the relevant quantity 

A Qualitative View 

Just a few minutes' reflection will tell you that the voltage reading is off, in the circuit as 
drawn; moving the DVM solves that problem (above), but now makes the current reading 
inaccurate. 
A Quantitative View 

Here's the problem we want to spend a few minutes on: 

Problem: 

Errors caused by the Meters 

If the analog meter movement is as described in the Text's problem 1.8, 
what percentage error in the voltage reading results, if the voltage probe is 
connected as shown in the figure for the first lab 1 experiment, when the 
measured resistor has the following values. Assume that you are applying 
20 volts, and that you can find a meter setting that lets you getfull-scale 
deflection in the current meter. 

• R = 20k ohms. 

• R = 200 ohms. 

• R =2M ohms. 

Same question, but concerning current measurement error, if the 
voltmeter probe is moved to connect directly to the top of the resistor, for 
the same resistor values. Assume the DVM has an input resistance of 20 
Mohms. 
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Errors in Voltage readings 
The first question is easier than it may appear. The error we get results from the voltage 

drop across the current meter; but we know what that drop is, from problem 1.8: full-scale: 
0.25V. So, the resistor values do not matter. Our voltage readings always are high by a 
quarter volt, if we can set the current meter to give full-scale deflection. The value of the 
resistor being measured does not matter. 

When the DVM reads 20V, the true voltage (at the top of the resistor) is 19.75V. Our 
voltage reading is high by 0.25V/19.75V-about 0.25/20 or 1 part in 80: 1.25% (If we 
applied a lower voltage, the voltage error would be more important, assuming we still 
managed to get full-scale deflection from the current meter, as we might be able to by 
changing ranges). 

Errors in Current readings 

If we move the DVM to the top of the resistor, then the voltage reading becomes correct: 
we are measuring what we meant to measure. But now the current meter is reading a little 
high: it measures not only the resistor current but also the DVM current, which flows 
parallel to the current in R. 

The size of this error depends directly on the size of R we are measuring. You don't even 
need a pencil and paper to calculate how large the errors are: 

~ It=7Ui.oR 

~igure X1.4: DVM causes current-reading error: how large? %error same as ratio of R to RnVM 

If R is 20kQ 

If R is 200Q 
IfR is2MQ 

Conclusion? 

-and the DVM looks like 20M-then one part in a 
thousand of the total current flows through the DVM: the 
current reading will be high by 0.1 %. 

then the current error is minute: 1 part in 100,000: 0.001%. 
then the error is large: 1 part in ten. 

There is no general answer to the question, 'Which is the better way to place the DVM in 
this circuit?' The answer depends on R, on the applied voltage and on the consequent 
ammeter range setting. 

And before we leave this question, let's notice the implication of that last phrase: the 
error depends on the VOM range setting. Why? Well, this is our first encounter with the 
concept we like to call Electronic Justice, or the principle that The Greedy Will Be 
Punished. No doubt these names mystify you, so we'll be specific: the thought is that if you 
want good resolution from the YOM, you will pay a price: the meter will alter results more 
than if you looked for less resolution: 
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Figure X1.5: Tradeoffs, or Electronic Justice I: YOM or DVM as ammeter: the larger the reading, the larger the voltage error 
introduced; YOM as voltmeter: the larger the deflection at a given V in• the lower the input impedance 

If you want the current meter needle to swing nearly all the way across the dial (giving best 
resolution: small changes in current cause relatively large needle movement), then you'll get 
nearly the full-scale 1/4-volt drop across the ammeter. The same goes for the DVM as 
ammeter, if you understand that 'full scale' for the DVM means filling its digital range: "3 
1/2 digits," as the jargon goes: the "half digit" is a character that takes only the values zero 
or one. So, if you set the DVM current range so that your reading looks like 

.093 
you have poor resolution: about one percent. If you are able to choose a setting that makes 
the same current look like 0.930, you've improved resolution lOX. But you have also 
increased the voltage drop across the meter by the same factor; for the DVM, like the analog 
VOM drops l/4V full-scale, and proportionately less for smaller "deflection" (in the VOM) 
or smaller fractions of the full-scale range (for the DVM). 

3. Thevenin Models 

Problem: Thevenin Models 
Draw Thevenin Models for the following circuits. Give answers to 

10% and to 1% 

20V 

1 5 I~ 

1 D I< 

-S"V 

Figure X1.6: Some circuits to be reduced to Thevenin models 

Some of these examples show typical difficulties that can slow you down until you have 
done a lot of Thevenin models. 
The leftmost circuit is most easily done by temporarily redefining ground. That trick puts 
the circuit into entirely familiar form: 
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Figure X1.7: A slightly-novel problem reduced to a familiar one, by temporary redefinition of ground 

The only difficulty that the middle circuit presents comes when we try to approximate. The 
1% answer is easy, here. The 10% answer is tricky. If you have been paying attention to 
our exhortations to use 10% approximations, then you may be tempted to model each of the 
resistor blocks with the dominant R: the small one, in the parallel case, the big one in the 
series case: 

101' 

app'oximations misus.d: 

10V 

0.?6V ::::::?=:::. ~ o.91V? :::: ?.,;: ~ == 1 Y ? 

(_{fo f%) 

} '·"' 
~--2 O% .,,.,._., NO! 

~------ 2 5% trr"r ----~ 
Figure X1.8: 10% approximations: errors can accumulate 

Unfortunately, this is a rare case when the errors gang up on us; we are obliged to carry 
greater precision for the two elements that make up the divider. 

This example is not meant to make you give up approximations. It makes the point that 
it's the result that should be good to the stated precision, not just the intermediate steps. 

0.1 "'A 

:::: 

10K 

10K // Roor -IrouuE 
'------..---.--

infiiite: 
- AV 

_/'KT 
,dtafj zero 

Figure X1.9: Current source feeding resistor, and equivalent Thevenin model 

The current source shown here probably looks queer to you. But you needn't understand 
how to make one to see its effect; just take it on faith that it does what's claimed: sources 
(squirts) a fixed current, down toward the negative supply. The rest follows from Ohm's 
Law. (In Chapter 2 you will learn to design these things-and you will discover that some 
devices just do behave like current sources without being coaxed into it: transistors behave 
this way-both bipolar and FET.) 
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The point that the current source shows a very high output impedance helps to remind us 
of the definition of impedance: always the same: !:J.V/M. It is better to carry that general 
notion with you than to memorize a truth like 'Current sources show high output 
impedance.' Recalling that definition of impedance, you can always figure out the current 
source's approximate output impedance (large versus small); soon you will know the 
particular result for a current source, just because you will have seen this case repeatedly. 

4. 'Looking through' a circuit fragment, and R1n, Rout 

Rin 

Problem: !tw &ut 
What are Rin• Rout at the indicated points? 

> 101< 
~ 

~ /0 k 
c 

Figure Xl.lO: Determining R1., Rout; you need to decide what's beyond the circuit to which you're 
connecting 

It's clear what Rin the divider should show: just R1 + R 2: 10k + lOk = 20k. But when we say 
that are we answering the right question? Isn't the divider surely going to drive something 
down the line? If not, why was it constructed? 

The answer is Yes, it is going to drive something else-the load. But that something else 
should show its own Rin high enough so that it does not appreciably alter the result you got 
when you ignored the load. If we follow our lOX rule of thumb (see the end of Class 1 
notes), you won't be far off this idealization: less than 10% off. To put this concisely, you 
might say simply that we assume an idea/load: a load with infinite input impedance. 

Figure Xl.ll: R10: we need an assumption about the load that the circuit drives, if we are to determine R1• 
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Rout 

Here the same problem arises-and we settle it in the same way: by assuming an ideal 
source. The difficulty, again, is that we need to make some assumption about what is on the 
far side of the divider if we are to determine Rout: 

7o·o fl 

RouT 

Figure X1.12: Rout: we need an assumption about the source that drives the circuit, if we are to determine Rout 

4. Effects of loading 

Problem: Effects of loading 

What is the voltage at X-
zov ---

Figure Xl.l3: Vout: calculated versus measured 

with no load attached? 

When measured with a YOM labeled" 10,000 ohms/volt?" 

When measured with a scope whose input resistance is 1 MQ? 

This example recapitulates a point made several times over in the the first day's class notes, 
as you recognize. Reminder: The" ... ohms/volt" rating implies that on the 1-volt scale (that 
is, when 1 V causes full deflection of the meter) the meter will present that input resistance. 
What resistance would the meter present when set to the 10 volt scale? 

We start, as usual, by trying to reduce the circuit to familiar form. The Thevenin model 
does that for us. Then we add meter or scope as load, forming a voltage divider, and see 
what voltage results: 
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----·-
S"OK 

100/'\ 

Figure X1.14: Thevenin model of the circuit under test; and showing the "load"-this time, a meter or scope 

You will go through this general process again and again, in this course: reduce an 
unfamiliar circuit diagram to one that looks familiar. Sometimes you will do that by merely 
redrawing or rearranging the circuit; more often you will invoke a model, and often that 
model will be Thevenin' s. 
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Reading: 

Problems: 

1-1. Ohm's Law 

VA~JJ'H~LC 

Pow~R, 

SuPPL't' 

0-20 v 

Lab 1: DC Circuits 

Chapter 1, sees 1.1 - 1.11. 
Appendix A (don't worry if there are things you 
don't understand) 
Appendix C 

Problems in text. 
Additional Exercises 1 ,2. 

0-20 v 
])IG!"fAL 
VOL711~T€R, 
+ -

2ok 

Figure Ll.l: Circuit for measurement of resistor's I vs V 

First, the pedestrian part of this exercise: Verify that the resistor obeys Ohm's law, by 
measuring V and I for a few voltages. 

A preliminary note on procedure 
The principal challenge here is simply to get used to the breadboard and the way to 

connect instruments to it. We do not expect you to find Ohm's Law surprising. Try to build 
your circuit on the breadboard, not in the air. Novices often begin by suspending a resistor 
between the jaws of alligator clips that run to power supply and meters. Try to do better: 
plug the resistor into the plastic breadboard strip. Bring power supply and meters to the 
breadboard through jacks (banana jacks, if your breadboard has them); then plug a wire into 
the breadboard so as to join resistor, for example, to banana jack. Below is a sketch of the 
poor way and better way to build a circuit. 
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Figure LI.2: Bad and Good breadboarding technique: Left: labor intensive, mid-air method, in which many hands hold 
everything precariously in place; Right: tidy method: circuit wired in place 

Have your instructor demonstrate which holes are connected to which, how to connect 
voltages and signals from the outside world, etc. 

This is also the right time to begin to establish some conventions that will help you keep 
your circuits intelligible: 

• Try to build your circuit so that it looks like its circuit diagram: 

Let signal flow in from left, exit on right (in this case, the "signal" is just 
V; the "output" is just I, read on the ammeter); 

Place ground on a horizontal breadboard bus strip below your circuit; 
place the positive supply on a similar bus above your circuit. When you 
reach circuits that include negative supply, place that on a bus strip below 
the ground bus. 

Use color coding to help you follow your own wiring: use black for 
ground, red for the positive supply. Such color coding helps a little now, 
a lot later, when you begin to lay out more complicated digital circuits. 

Figure L1.3: Bad and good breadboard layouts of a simple circuit 

Use a variable regulated de supply, and the hookup shown in the first figure, above, Fig. 
Ll.l. Note that voltages are measured between points in the circuit, while currents are 



26 Lab 1: DC Circuits Ll-3 

measured through a part of a circuit. Therefore you usually have to break the circuit to 
measure a current. 

Measure a few values of V and I for the 20k resistor (note: you may well find no 20k 
resistor in your kit. Don't panic. Consider how to take advantage of some lOk's.) Next try 
a lOk resistor instead, and sketch the two curves that these resistors define on a plot of I vs 
V. You may be disinclined to draw these "curves," because you knew without doing this 
experiment what they would look like. Fair enough. But we encourage you to draw the plot 
for contrast with the devices you will meet next-which interest us just because their curves 
do not look like those of a resistor: just because these other devices do not obey Ohm's 
Law. 
Effects of the instruments on your readings 

Now that you have done what we called the pedestrian part of the experiment, consider a 
couple of practical questions that arise in even this simplest of "experiments." 

A Qualitative View 

The voltmeter is not measuring the voltage at the place you want, namely across the 
resistor. Does that matter? How can you fix the circuit so the voltmeter measures what you 
want? When you've done that, what about the accuracy of the current measurement? Can 
you summarize by saying what an ideal voltmeter (or ammeter) should do to the circuit 
under test? What does that say about its "internal resistance"? 

A Quantitative View 

How large is each error, given a 20k resistor. Which of the two alternative hookups is 
preferable, therefore? Would you have reached the same conclusion if the resistor had been 
20MQ? 

(You will find this question pursued in one of the Worked Examples.) 

Two Nonlinear Devices: (Ohm's Law Defied!) 

1-2. An incandescent lamp 
Now perform the same measurement (I vs V) for a #47 lamp. Use the lOOmA and 

500mA scales on your YOM. Do not exceed 6.5 volts! Again you need only a few 
readings. Again we suggest you plot your results on the drawing you used to show the 
resistor's behavior. Get enough points to show how the lamp diverges from resistor-like 
performance. 

What is the "resistance" of the lamp? Is this a reasonable question? If the lamp's 
filament is made of a material fundamentally like the material used in the resistors you 
tested earlier, what accounts for the funny shape of the lamp's V vs I curve? 
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1-3. The Diode 
Here is another device that does not obey Ohm's law: the diode. (We don't expect you to 

understand how the diode works yet; we just want you to meet it, to get some perspective on 
Ohm's Law devices: to see that they constitute an important but special case). 

We need to modify the test setup here, because you can't just stick a voltage across a 
diode, as you did for the resistor and lamp above1 You'll see why after you've measured the 
diode's V vs I. Do that by wiring up the circuit shown below. 

GND 0-----------------------.-------~ 

Figure L1.4: Diode VI measuring circuit 

In this circuit you are applying a current, and noting the diode voltage that results; earlier, 
you applied a voltage and read resulting current. The lk resistor limits the current to safe 
values. Vary R (use a lOOk variable resistor (usually called a potentiometer or "pot" even 
when wired, as here, as a variable resistor), a resistor substitution box, or a selection of 
various fixed resistors), and look at I vs V, sketching the plot in two forms: linear and 
"semi-log." 

First, get an impression of the shape of the linear plot; just four or five points should 
define the shape of the curve. Then draw the same points on a semi-log plot, which 
compresses one of the axes. (Evidently, it is the fast-growing current axis that needs 
compressing, in this case.) If you have some semi-log paper use it. If you don't have such 
paper, you can use the small version laid out below. The point is to see the pattern. You 
will see this shape again in Lab 5 when you let the scope plot diode and transistor 
characteristics for you. 

1. Well, you can; but you can't do it twice with one diode! 
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Figure L1.5: Diode I vs V: linear plot; semi-log plot 

See what happens if you reverse the direction of the diode. 
How would you summarize the V vs I behavior of a diode? 

Ll-5 

Now explain what would happen if you were to put 5 volts across the diode (Don't try 
it!). Look at a diode data sheet, if you're curious: see what the manufacturer thinks would 
happen. The data sheet won't say "Boom" or "Pfft," but that is what it will mean. 

We'll do lots more with this important device; see, e.g., sees. 1.25-1.31 in the text, and 
Lab 3. 

1-4. Voltage Divider 

Figure L1.6: Voltage divider 

Construct the voltage divider shown above (this is the circuit described in Exercise 1.9 (p. 
10 of the text)). Apply Vin = 15 volts (use the de voltages on the breadboard). Measure the 
(open circuit) output voltage. Then attach a lOk load and see what happens. 

Now measure the short circuit current. (That means "short the output to ground, but 
make the current flow through your current meter. Don't let the scary word "short" throw 
you: the current in this case will be very modest. You may have grown up thinking "a short 
blows a fuse." That's a good generalization around the house, but it often does not hold in 
electronics.) 

From I short Circuit and V Open Circuit you can calculate the Thevenin equivalent circuit. 
Now build the Thevenin equivalent circuit, using the variable regulated de supply as the 

voltage source, and check that its open circuit voltage and short circuit current match those 
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of the circuit that it models. Then attach a lOk load, just as you did with the original voltage 
divider, to see if it behaves identically. 

A Note on Practical use ofThevenin Models 

You will rarely do again what you just did: short the output of a circuit 
to ground in order to discover its Rrhevenin (or "output impedance," as we 
soon will begin to call this characteristic). This method is too brutal in the 
lab, and too slow when you want to calculate Rrh on paper. 

In the lab, Isc could be too large for the health of your circuit (as in 
your fuse-blowing experience). You will soon learn a gentler way to get 
the same information. 

On paper, if you are given the circuit diagram the fastest way to get Rrh 

for a divider is always to take the parallel resistance of the several 
resistances that make up the divider (again assuming Rsource is ideal: zero 
Q). So, in the case you just examined: 

= 

Figure L1.7: RTh =parallel resistances as seen from the circuit's output 

1-5. Oscilloscope 
We'll be using the oscilloscope ("scope") in virtually every lab from now on. If you run 

out of time today, you can learn to use the scope while doing the experiments of Lab 2. You 
will find Lab 2 easier, however, if today you can devote perhaps 20 minutes to meeting the 
scope. 

Get familiar with scope and function generator (a box that puts out time-varying 
voltages: waveforms: things like sine waves, triangle waves and square waves) by 
generating a 1000 hertz (1kHz, 1000 cycles/sec) sine wave with the function generator and 
displaying it on the scope. 

If both instruments seem to present you with a bewildering array of switches and knobs, 
don't blame yourself. These front-panels just are complicated. You will need several lab 
sessions to get fully used to them-and at term's end you may still not know all: it may be a 
long time before you find any occasion for use of the holdoff control, for example, or of 
single-shot triggering, if your scope offers this. 
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Play with the scope's sweep and trigger controls. Specifically, try the following: 

• The vertical gain switch. This controls "volts!div"; note that "div" or "division" 
refers to the centimeter marks, not to the tiny 0.2 em marks); 

• The horizontal sweep speed selector: time per division. 

On this knob as on the vertical gain knob, make sure the switch is in its 
CAL position, not VAR or "variable." Usually that means that you should 
tum a small center knob clockwise till you feel the switch detent click into 
place. If you don't do this, you can't trust any reading you take!) 

• The trigger controls. Don't feel dumb if you have a hard time getting the scope to 
trigger properly. Triggering is by far the subtlest part of scope operation. When 
you think you have triggering under control, invite your partner to prove to you that 
you don't: have your partner randomize some of the scope controls, then see if you 
can regain a sensible display (don't overdo it here!). 

Beware the tempting so-called "normal" settings (usually labeled 
"NORM"). They rarely help, and instead cause much misery when 
misapplied. Think of "normal" here as short for abnormal! Save it for 
the rare occasion when you know you need it. "AUTO" is almost always 
the better choice. 

Switch the function generator to square waves and use the scope to measure the 
"risetime" of the square wave (defined as time to pass from 10% to 90% of its full 
amplitude). 

At first you may be inclined to despair, saying "Risetime? The square wave rises 
instantaneously." The scope, properly applied, will show you this is not so. 

A suggestion on triggering: 

It's a good idea to watch the edge that triggers the scope, rather than 
trigger on one event and watch another. If you watch the trigger event, 
you will find that you can sweep the scope fast without losing the display 
off the right side of the screen. 

What comes out of the function generator's SYNC OUT or TTL connector? Look at 
this on one channel while you watch a triangle or square wave on the other scope channel. 
To see how SYNC or TTL can be useful, try to trigger the scope on the peak of a sine wave 
without using these aids; then notice how entirely easy it is to trigger so when you do use 
SYNC or TTL to trigger the scope. (Triggering on a well-defined point in a waveform, such 
as peak or trough, is especially useful when you become interested in measuring a 
difference in phase between two waveforms; this you will do several times in the next lab.) 

How about the terminal marked CALIBRATOR (or "CAL") on the scope's front panel? 
(We won't ask you to use this signal yet; not until Lab 3 do we explain how a scope probe 
works, and how you "calibrate" it with this signaL For now, just note that this signal is 
available to you). Postpone using scope probes until you understand what is within one of 
these gadgets. A "lOX" scope probe is not just a piece of coaxial cable. 
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Put an "offset" onto the signal, if your function generator permits, then see what the 
AC/DC switch (located near the scope inputs) does. 

Note on AC/DC switch: 
Conunon sense may seem to invite you to use the AC position most of 

the time: after all, aren't these time-varying signals that you're looking at 
"AC"-alternating current (in some sense)? Eschew this plausible error. 
The AC setting on the scope puts a capacitor in series with the scope 
input, and this can produce startling distortions of waveforms if you forget 
it is there. (See what a 50 Hz square wave looks like on AC, if you need 
convincing.) Furthermore, the AC setting washes away DC information, 
as you have seen: it hides from you the fact that a sine wave is sitting on a 
DC offset, for example. You don't want to wash away information except 
when you choose to do so knowingly and purposefully. Once in a while 
you will want to look at a little sine with its DC level stripped away; but 
always you will want to know that this DC information has been made 
invisible. 

Set the function generator to some frequency in the middle of its range, then try to make 
an accurate frequency measurement with the scope. (Directly, you are obliged to measure 
period, of course, not frequency.) You will do this operation hundreds of times during this 
course. Soon you will be good at it. 

Trust the scope period readings; distrust the function generator frequency markings; these 
are useful only for very approximate guidance, on ordinary function generators. 

Try looking at pulses, say 1!ls wide, at 10kHz. 

1-6. AC Voltage Divider 
First spend a minute thinking about the following question: How would the analysis of 

the voltage divider be affected by an input voltage that changes with time (i.e., an input 
signal)? Now hook up the voltage divider from lab exercise 1-4, above, and see what it 
does to a 1kHz sine wave (use function generator and scope), comparing input and output 
signals. 

1kHz 
slnewave 

10k 

t-out 
11ok 

Figure L1.8: Voltage divider applied to a time-varying signal 

Explain in detail, to your own satisfaction, why the divider must act as it does. 

If this question seems silly to you, you know either too much or too little. 



Topics: 

• new: 

Capacitors 

Class 2: Capacitors and RC Circuits 

Capacitors: dynamic description 
RC circuits 

+ Time domain: 

• step response 
• integrator, differentia tor (approximate) 

+ Frequency domain: filters 

Today things get a little more complicated, and more interesting, as we meet frequency
dependent circuits, relying on the capacitor to implement this new trick. Capacitors let us 
build circuits that "remember" their recent history. That ability allows us to make timing 
circuits (circuits that let this happen a predetermined time after that occurs); the most 
important of such circuits are oscillators-circuits that do this timing operation over and 
over, endlessly, in order to set the frequency of an output waveform. The capacitor's 
memory also lets us make circuits that respond mostly to changes (differentiators) or mostly 
to averages (integrators), and-by far the most important-circuits that favor one frequency 
range over another (filters). 

All of these circuit fragments will be useful within later, more complicated circuits. The 
filters, above all others, will be with us constantly as we meet other analog circuits. They 
are nearly as ubiquitous as the (resistive-) voltage divider that we met in the first class. 
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Figure N2.1: The simplest capacitor configuration: sandwich 

This capacitor is drawn to look like a ham sandwich: metal plates are the bread, some 
dielectric is the ham (ceramic capacitors really are about as simple as this). More often, 
capacitors achieve large area (thus large capacitance) by doing something tricky, such as 
putting the dielectric between two thin layers of metal foil, then rolling the whole thing up 
like a roll of paper towel (mylar capacitors are built this way). 

Text sec. 1.12 

A static description of the way a capacitor behaves would say 
Q=CV 

where Q is total charge, C is the measure of how big the cap is (how much charge it can 
store at a given voltage: C = Q!V), and Vis the voltage across the cap. 
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This statement just defines the notion of capacitance. It is a Physicist's way of describing 
how a cap behaves, and rarely will we use it again. Instead, we use a dynamic 
description-a statement of how things change with time: 

I= C dV/dt 
This is just the time derivative of the "static" description. C is constant with time; I is 
defined as the rate at which charge flows. This equation isn't hard to grasp: it says 'The 
bigger the current, the faster the cap's voltage changes.' 

Again, flowing water helps intuition: think of the cap (with one end grounded) as a tub 
that can hold charge: 

I 

1 c.T 
fub SJ~ 
/s ''C)) 

Figure N2.2: A cap with one end grounded works a lot like a tub of water 

A tub of large diameter (cap) holds a lot of water (charge), for a given height (V). If you fill 
the tub through a thin straw (small I), the water level-V-will rise slowly; if you fill or 
drain through a fire hose (big I) the tub will fill ("charge") or drain ("discharge") quickly. A 
tub of large diameter (large capacitor) takes longer to fill or drain than a small tub. Self
evident, isn't it? 

Time-domain Description 
Text sec.l.l3 

Now let's leave tubs of water, and anticipate what we will see when we watch the voltage 
on a cap change with time: when we look on a scope screen, as you will do in Lab 2. 
An easy case: constant I 

Text sec.1.15; 
see Fig. 1.43 

Vcap 

Figure N23: Easy case: constant 1-> constant dV/dt 

This tidy waveform, called a ramp, is useful, and you will come to recognize it as the 
signature of this circuit fragment: capacitor driven by constant current (or "current source"). 
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This arrangement is used to generate a triangle waveform, for example: 
Compare Text sec.1.15, 
Fig. 1.42: ramp generator 

d'"""'J• ~ 
v_ 

Vout 

Ic_ 

Figure N2.4: How to use a cap to generate a triangle waveform: ramp up, ramp down 

N2-3 

But the ramp waveform is relatively rare, because current sources are relatively rare. Much 
more common is the next case. 

A harder case but more common: constant voltage source in series with a resistor 

-1-10 

i~>~s Z111s t,·,e 
al- IDV acn>sS it : z,.,J'l 
r1f: f = ~ = tov/,.,s) 

I )( 10-

Figure N2.5: The more usual case: cap charged and discharged from a voltage source, through a series resistor 

Here, the voltage on the cap approaches the applied voltage-but at a rate that diminishes 
toward zero as VciP approaches its destination. It starts out bravely, moving fast toward its 
Vin (charging at lU rnA, in the example above, thus at 10V/ms); but as it gets nearer to its 
goal, it loses its nerve. By the time it is 1 volt away, it has slowed to 1/10 its starting rate. 

(The cap behaves a lot like the hare in Xeno's paradox: remember him? Xeno teased his 
fellow-Athenians by asking a question something like this: 'If a hare keeps going halfway to 
the wall, then again halfway to the wall, does he ever get there?' (Xeno really had a hare 
chase a tortoise; but the electronic analog to the tortoise escapes us, so we'll simplify his 
problem.) Hares do bump their noses; capacitors don't: Vcap never does reach Vapplicd• in an 
RC circuit. But it will come as close as you want.) 
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Here's a fuller account: 
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Figure N2.6: RC charge, discharge curves 
Don't try to memorize these numbers, except two: 

+ in one RC (called "one time-constant") 63% of the way 

+ in .five RCs, 99% of the way 

If you need an exact solution to such a timing problem: 

V _ V (1 (-t/RC)) cap - applied - e 
In case you can't see at a glance what this equation is trying to tell you, look at 

e (-t/RC) 

by itself: 

+ when t = RC, this expression is 1/e, or 0.37. 

+ when t =very large (» RC), this expression is tiny, and Vcap ~ Vapplied 

A tip to help you calculate time-constants: 

MQ and j.!F give time-constant in seconds 

kQ and j.!F give time-constant in milliseconds 

In the case above, RC is the product of lk and lj.!F: 1 ms. 

Integrators and Differentiators 

~•JnaLl-'"-
R. 

ovt 

CI 
infeyrafor ? d,fferenti a for? 

Figure N2.7: Can we exploit cap's£ = C d'!_idt to make differentiator & integrator? 
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The very useful formula, I = CdV/dt will let us figure out when these two circuits perform 
pretty well as differentiator and integrator, respectively. 
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Let's, first, consider this simpler circuit: 
r;, 

V,·, -:i 
CI 

Figure N2.8: Useless "differentiator"? 
The current that flows in the cap is proportional to dVin/dt: the circuit differentiates the input 
signal. But the circuit is pretty evidently useless. It gives us no way to measure that 
current. If we could devise a way to measure the current, we would have a differentiator. 

Here's our earlier proposal, again. Does it work? 

ll;n~ ~~ 

1 c r~dvt 
<It fG 

~ _ ,/ ~~$ } error! 

difFereniiator? 

Figure N2.9: Differentiator? -again 

Answer: Yes and No: Yes, to the extent that Vcap = Yin (and thus dVcap/dt = dVin/dt), because 
the circuit responds to dv/dt across the cap, whereas what interests us is dVin/dt-that is, 
relative to ground. 

So, the circuit errs to the extent that the output moves away from ground; but of course it 
must move away from ground to give us an output. This differentiator is compromised. So 
is the RC integrator, it turns out. When we meet operational amplifiers, we will manage to 
make nearly-ideal integrators, and pretty good differentiators. 

The text puts this point this way: 

Text sec.J.l4 

for the differentiator: 
" ... chooseR and C small enough so that dV/dt « dVin/dt .... " 

Text sec.l.l5 

for the integrator: 
" ... [make sure that] Y0 u1«Vin·· .. mRC » 1." 

We can put this simply-perhaps crudely: assume a sine wave input. Then, 

the RC differentiator (and integrator, too) works pretty well if it is 
murdering the signal (that is, attenuates it severely), so that Vout (and dVout) 
is tiny: hardly moves away from ground. 

It follows, along the way, that differentiator and integrator will impose a 90° phase shift on 
a sinusoidal input. This result, obvious here, should help you anticipate how RC circuits 
viewed as "filters" (below) will impose phase shifts. 
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Integrator Assume !1;, ,;; C<Jnsh.nt ••• 

II,'., ~~ I not constari, fo -Me ex-lent Vout mo~s 

dVout should be constant. 
Vovt cit 

But I' it? CI 

Figure N2.10: Integrator?-again 

One can make a similar argument to explain the limitations of the RC integrator. To keep 
things simple, imagine that you apply a step input; ask what waveform out you would like 
to see out, and what, therefore, you would like the current to do. 

RC Filters 
These are the most important application of capacitors. These circuits are just voltage 

dividers, essentially like the resistive dividers you have met already. The resistive dividers 
treated DC and time-varying signals alike. To some of you that seemed obvious and 
inevitable (and maybe ·you felt insulted by the exercise at the end of Lab 1 that asked you to 
confirm that AC was like DC to the divider). It happens because resistors can't remember 
what happened even an instant ago. They're little existentialists, living in the present. 
(We're talking about ideal R's, of course.) 
The impedance or reactance of a cap 

A cap's impedance varies with frequency. ("Impedance" is the generalized form of what 
we called "resistance" for "resistors;" "reactance" is the term reserved for capacitors and 
inductors (the latter usually are coils of wire, often wound around an iron core)). 

Compare Text sec. 1.12 

It's obvious that a cap cannot conduct a DC current: just recall what the cap's insides 
look like: an insulator separating two plates. That takes care of the cap's "impedance" at 
DC: clearly it's infinite (or huge, anyway). 

It is not obvious that a rapidly-varying voltage can pass "through" a capacitor, but that 
does happen. The Text explains this difficult notion at sec. 1. 12, speaking of the current 
that passes through the cap. Here's a second attempt to explain how a voltage signal passes 
through a cap, in the high-pass configuration. If you're already happy with the result, skip 
this paragraph. 

When we say the AC signal passes through, all we mean is that a wiggle on the left 
causes a wiggle of similar size on the right: 

W~5/e ,;.,_ ... ... "'w'JJie. tJvt 

'L ---lr~,omo oo~t p,., 
b.t J!of fony e>10":Jh 

-:- ft>r Vcap fO cAan:;e 
aptrv.ct·a&!J 

Figure N2.11: How a cap "passes" a signal 

The wiggle makes it "across" the cap so long as there isn't time for the voltage on the cap to 
change much before the wiggle has ended-before the voltage heads in the other direction. 
In other words, quick wiggles pass; slow wiggles don't. 
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We can stop worrying about our intuition and state the expression for the cap's reactance: 

Xc = -j/coC == -j/2rcfC 

And once we have an expression for the impedance of the cap-an expression that shows 
it varying continuously with frequency-we can see how capacitors will perform in voltage 
dividers. 

RC Voltage dividers 
Text sec. 1.18 

You know how a resistive divider works on a sine. How would you expect a divider 
made of capacitors to treat a time-varying signal? 

Figure N2.12: Two dividers that deliver 1/2 of Yin 

If this case worries you, good: you're probably worrying about phase shifts. Turns out they 
cause no trouble here: output is in phase with input. (If you can handle the complex 
notation, write Xc== -j I coC, and you'll see the j's wash out.) 

But what happens in the combined case, where the divider is made up of both R and C? 
This turns out to be an extremely important case. 

Text sec.1.19 

This problem is harder, but still fits the voltage-divider model. Let's generalize that 

modelabit: v..l~ 1 }: ~ rr.~ 
. ~ . 7 

jtntra/ized volfaJe divider 

Figure N2.13: Generalized voltage divider; and voltage dividers made up of R paired with C 

The behavior of these voltage dividers-which we call filters when we speak of them in 
frequency terms, because each favors either high or low frequencies- is easy to describe: 

1. See what the filter does at the two frequency extremes. (This looking at extremes 
is a useful trick; you will soon use it again to find the filters' worst-case Zin and 
Zout·) 

Figure N2.14: Establishing the endpoints of the filter's frequency response curve 

At f == 0: what fraction out? At f ==very high: what fraction out? 
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2. Determine where the output "turns the corner" (corner defined arbitrarily1) as the 
frequency where the output is 3dB less than the input (always called just "the 3 dB 
point"; "minus" understood). 

Knowing the endpoints, which tell us whether the filter is high-pass or low-pass, and 
knowing the 3dB point, we can draw the full frequency-response curve: 

f~JU;fass fitkr hljh·f'dSS f;lf,r 
l 

0 "'----+-----
f3JB 

fn$uencJ 

Figure N2.15: RC filter's frequency response curve 

The "3dB point," the frequency where the filter "turns the corner" is 

f3dB = 1!(2rrRC) 

Beware the more elegant formulation that uses co: 
C03dB = 1/RC. 

That is tidy, but is very likely to give you answers off by about a factor of 6, since you will 
be measuring period and its inverse in the lab: frequency in hertz (or "cycles-per-second," 
as it used to be called), not in radians. 

Two asides: 

Caution! 
Do not confuse these frequency-domain pictures with the earlier RC step-response picture, 
(which speaks in the time-domain). 

1 

0 '----+-------

~ 

v~~t------~ 
?Ftn L__ 

f3JB 

fre'/ruency 

Figure N2.16: Deceptive similarity between shapes of time- and frequency- plots of RC circuits 

Not only do the curves look vaguely similar. To make things worse, details here seem 
tailor-made to deceive you: 

+ Step response: in the time RC (time-constant), Vcap moves to about 0.6 of the 
applied step voltage (this is 1 - 1/e). 

+ Frequency domain: at f3dB• a frequency determined by RC, the filter's VoutNin is 
about 0.7 (this is 1J;f2) 

Don't fall into this trap. 

A note re Log Plots 

You may wonder why the curves we have drawn, the curve in Fig. 1.59, and those you 
see on the scope screen (when you "sweep" the input frequency) don't look like the tidier 
curves shown in most books that treat frequency response, or like the curves in Chapter 5 of 

1. Well, not quite arbitrarily: a signal reduced by 3dB delivers half its original power. 
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the Text. Our curves trickle off toward zero, in the low-pass configuration, whereas these 
other curves seem to fall smoothly and promptly to zero. This is an effect of the logarithmic 
compression of the axes on the usual graph. Our plots are linear; the usual plot ("Bode 
plot") is log-log: 

"" ',; 

~ 01----

~s '-.:.... -1o 

_f'> 
-2oL------+---::... 

Figure N2.17: Linear versus log-log frequency-response plots contrasted 

Input and output impedance of an RC Circuit 
If filter A is to drive filter B-or anything else, in fact-it must conform to our 1 OX rule 

of thumb, which we discussed last time, when we were considering only resistive circuits. 
The same reasons prevail, but here they are more urgent: if we don't follow this rule, not 
only will signals get attenuated; frequency response also is likely to be altered. 

But to enforce our rule of thumb, we need to know Zin and Zout for the filters. At first 
glance, the problem looks nasty. What is Zout for the low-pass filter, for example? A novice 
would give you an answer that's much more complicated than necessary. He might say, 

Zout = Xc parallel R = -j/roC.R I ( -j/roC + R) 
Yowl And then this expression doesn't really give an answer: it tells us that the answer is 
frequency-dependent. 

We cheerfully sidestep this hard work, by considering only worst case values. We ask, 
'How bad can things get? 

We ask, 'How bad can Zin get?' And that means, 'How low can it get?' 

We ask, 'How bad can Zout get?' And that means, 'How high can it get?' 
This trick delivers a stunningly-easy answer: the answer is always just Rl Here's the 
argument for a low-pass, for example: 

i!,;, ~R R 
--... -"Nv---t-

1 
I 
I 
I 

-!,.. 

worst Zin: cap looks like a short: Zin = R 
(this happens at highest frequencies) 

worst Zout: cap doesn't help at all; we look through to 
the source, and see only R: Zout = R (this happens at 
lowest frequencies) 

Figure N2.18: Worst-case Zin and Zout for RC filter reduces to just R 

Now you can string together RC circuits just as you could string together voltage dividers, 
without worrying about interaction among them. 
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Phase Shift 
You already know roughly what to expect: the differentiator and integrator showed you 

phase shifts of 90°, and did this when they were severely attenuating a sine-wave. You need 
to beware the misconception that because a circuit has a cap in it, you should expect to see a 
90° shift (or even just noticeable shift). That is not so. You need an intuitive sense of when 
phase shifting occurs, and of roughly its magnitude. You rarely will need to calculate the 
amount of shift. 

Here is a start: a rough account of phase shift in RC circuits: 

If the amplitude out is close to amplitude in, you will see little or no phase 
shift. If the output is much attenuated, you will see considerable shift (90° is 
maximum) 

And here are curves saying the same thing: 
Text sec. 1.20, 
flg.l.60,p. 38 

'"6' 

l.or------
O.?CJ'T 

0.1 

0.01 

o.oo11---~-----::"---'-----' 

0.01f3dB 0.1 f3df, f&IB 1of,316 1oof.1!B 

Figure N2.19: Attenuation and phase shift (log-log plot) 

Why does this happen? Here's an attempt to rationalize the result: 

• voltages in R and Care 90° out of phase, as you know. 
• the sum of the voltages across R and C must equal, at every instant, Vin· 

• as frequency changes, R and C share the total Vin differently, and this alters the 
phase of vout relative to vin: 

Consider a low-pass, for example: if a lot of the total voltage, Vin• appears across the cap, 
then the phase of the input voltage (which appears across the RC series combination) will be 
close to the phase of the output voltage, which is taken across the cap alone. In other words, 
R plays a small part: Vout is about the same as Vin• in both amplitude and phase. Have we 
merely restated our earlier proposition? It almost seems so. 
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But let's try a drawing: 

v,, rv\; rv\; 
VR f\J\; ~ 

f\J\v if ...........__.. 
i>locki'J ;ms/ny 
Figure N2.20: Rand C sharing input voltage differently at two different frequencies 

Now let's try another aid to an intuitive understanding of phase shift: phasors. 

Phasor Diagrams 

N2-ll 

These diagrams let you compare phase and amplitude of input and output of circuits that 
shift phases (circuits including C's and L's). They make the performance graphic, and 
allow you to get approximate results by use of geometry rather than by explicit 
manipulation of complex quantities. 

The diagram uses axes that represent resistor-like ("real") impedances on the horizontal 
axis, and capacitor or inductor-like impedances ("imaginary"-but don't let that strange 
name scare you; for our purposes it only means that voltages across such elements are 90° 
out of phase with voltages across the resistors). This plot is known by the extra-frightening 
name, "complex plane" (with nasty overtones, to the untrained ear, of 'too-complicated
for-you plane'!). But don't lose heart. It's all very easy to understand and use. Even better, 
you don't need to understand phasors, if you don't want to. We use them rarely in the 
course, and always could use direct manipulation of the complex quantities instead. Phasors 
are meant to make you feel better. If they don't, forget them. 

-or-

"i"'aJm•ry" tJ.l(is: ,...ac.tance> t:>r

""'faj• aC{T)ss C ,,.. L 

'R•1skn. -r---+r-.... '~a (al<IS: resJSUnce or 
vo/fa~ e acrr>ss a ~s1d ance 

) 
Xc : -ISKJ/. 

(t~lni!'J) 

Ci>rnbmed 1rn ~dance (SfN~s), 
cr volfaJe 12<!~ 1?. ... C 

Figure N2.21: Phasor diagram: "complex plane;" showing an RC at f_3dB 

The diagram above shows an RC filter at its 3dB point, where, as you can see, the 
magnitude of the impedance of C is the same as that of R. The arrows, or vectors, show 
phase as well as amplitude (notice that this is the amplitude of the waveform: the peak 
value, not a voltage varying with time); they point at right angles so as to say that the 
voltages in R and C are 90° out of phase. 

"Voltages?," you may be protesting, "but you said these arrows represent impedances." 
True. But in a series circuit the voltages are proportional to the impedances, so this use of 
the figure is fair. 
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The total impedance that R and C present to the signal source is not 2R, but is the vector 
sum: it's the length of the hypotenuse, R...J2. And from this diagram we now can read two 
familiar truths about how an RC filter behaves at its 3dB point: 

• the amplitude of the output is down 3dB: down to 11...J2: the length of either the R 
or the C vector, relative to the hypotenuse. 

• the output is shifted 45° relative to the input: R or C vectors form an angle of 45° 
with the hypotenuse, which represents the phase of the input voltage. 

So far, we're only restating what you know. But to get some additional information out ot 
the diagram, try doubling the input frequency several times in succession, and watch what 
happens: 
each time, the length of the Xc vector is cut to half what it was. 
First doubling of frequency: 

l<c. = half wAat it- was : % 

Figure N2.22: RC after a doubling of frequency, relative to the previous diagram 

The first doubling also affects the length of the hypotenuse substantially, too, however; so 
the amplitude relative to input is not cut quite so much as 50% (6dB). You can see that the 
output is a good deal more attenuated, however, and also that phase shift has increased a 
good deal. 
Second doubling of frequency 

Xe ~ 3rn~!L 
(« IS"k.O.) 

Figure N2.23: RC after a doubling of frequency, relative to the previous diagram 

This time, the length of the hypotenuse is changed less, so the output shrinks nearly as the 
Xc vector shrinks: nearly 50%. Here, we are getting close to the -6dB!octave slope of the 
filter's rolloff curve. Meanwhile, the phase shift between output and input is increasing, 
too-approaching the limit of 90°. 

We've been assuming a low-pass. If you switch assumptions, and ask what these 
diagrams show happening to the output of a high-pass, you find all the information is there 
for you to extract. No surprise, there; but perhaps satisfying to notice. 
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LC circuit on phasor diagram 

Finally, let's look at an LC trap circuit on a phasor diagram. 

R 

= 

N2-13 

I/" w > Yrrc : XL """''"a~s 
(,;,ducftJr-lilct!.) V.n31J.;vt 

"l of 
co,..,bt~ed "-~sonance 
LC 7 

Series LC '"iraf" 

Figure N2.24: LC trap circuit, and its phasor diagram 

'- w < Vv'LC : Xc do,.,,,.a+es 
(cafacitor- /.ike) 

This is less familiar, but pleasing because it reveals the curious fact-which you will see in 
Lab 3 when you watch a similar (parallel) LC circuit-that the LC combination looks 
sometimes like L, sometimes C, showing its characteristic phase shift-and at resonance, 
shows no phase shift at all. We'll talk about LC's next time; but for the moment, see if you 
can enjoy how concisely this phasor diagram describes this behavior of the circuit (actually 
a trio of diagrams appears here, representing what happens at three sample frequencies). 

To check that these LC diagrams make sense, you may want to take a look at what the old 
voltage-divider equation tells you ought to happen: 

R 1f;,;g 'VOut 

"Z of 
cor»l:>tned 
LC 7 

Figure N2.25: LC trap: just another voltage divider 

Here's the expression for the output voltage as a fraction of input: 

Voutl Vin = Zcombination I (Zcombination + R) 
But 

Zcombination = -j/coC + jcoL. 
And at some frequency-where the magnitudes of the expressions on the right side of that 
last equation are equal-the sum is zero, because of the opposite signs. Away from this 
magic frequency (the "resonant frequency"), either cap or inductor dominates. Can you see 
all this on the phasor diagram? 

Better Filters 

Having looked hard at RC filters, maybe we should remind of the point that the last 
exercise in Lab 2 means to make: RC's make extremely useful filters, but if you need a 
better filter, you can make one, either with an LC combination, as in that circuit, or with 
operational amplifiers cleverly mimicking such an LC circuit (this topic is treated in Chapter 
5; we will not build such a circuit), or with a clever circuit called a 'switched-capacitor' 
filter, a circuit that you will get a chance to try, in Lab 11, and again in Lab 21. Here is a 
sketch (based on a scope photo) comparing the output of an ordinary RC low-pass against a 
5-pole Butterworth low-pass, like the one you will build at the end of Lab 2. 
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0 

fre't"e"c.J (Line•r s"'eef) 

Figure N2.26: Simple RC low-pass contrasted with 5-pole Butterworth low-pass 

("5-pole" is a fancy way to say that it something like, 'It rolls off the way 5 simple RC's in 
series would roll off'-it's five times as steep as the plain RC. But this nice filter works a 
whole lot better than an actual string of 5 RC's.) 

Not only is the roll-off of the Butterworth much more abrupt than the simple RC's, but 
also the "passband" looks much flatter: the fancy filter does a better job of passing. The 
poor old RC looks sickly next to the Butterworth, doesn't it? 

Nevertheless, we will use RC's nearly always. Nearly always, they are good enough. It 
would not be in the spirit of this course to pine after a more beautiful transfer function. We 
want circuits that work, and in most applications the plain old RC passes that test. 
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Chapter 1: Worked Examples: RC Circuits 

Two worked exercises: 

1. filter to keep "signal" and reject "noise" 

2. bandpass filter 

1. Filter to keep "signal" and reject "noise' 

Problem: 

Filter to remove fuzz: 
Suppose you are faced with a signal that looks like this: a signal of 

moderate frequency, polluted with some fuzz 

Figure X2.1: Signal With Fuzz Added 

1. Draw a skeleton circuit (no parts values, yet) that will keep most 
of the good signal, clearing away the fuzz. 

2. Now choose some values: 

a. If the load has value lOOk, choose R for your circuit. 
b. Choose f3dB• explaining your choice briefly. 
c. Choose C to achieve the f3dB that you chose. 
d. By about how much does your filter attenuate the noise 

"fuzz"? 

What is the circuit's input impedance-

a. at very low frequencies? 

b. at very high frequencies? 

c. at f3dB? 

3. What happens to the circuit output if the load has resistance JOk 
rather than 1 OOk? 
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A Solution: 

1. Skeleton Circuit 
You need to decide whether you want a low-pass or high-pass, since the signal and noise 

are distinguishable by their frequencies (and are far enough apart so that you can hope to get 
one without the other, using the simple filters we have just learned about). Since we have 
called the lower frequency "good" or "signal," we need a low-pass: 

Figure X2.2: Skeleton: just a low-pass filter 

2. ChooseR, given the load 

This dependence of R upon load follows from the observation that R of an RC filter 
defines the worst-case input and output impedance of the filter (see Class 2 notes). We want 
that output impedance low relative to the load's impedance; our rule of thumb says that 
'low' means low by a factor of 10. So, we want R ~ R10ad/10. In this case, that means R 
should be~ lOk. Let's use lOk. 

3. Choose i.JdB 
This is the only part of the problem that is not entirely mechanical. We know we want to 

pass the low and attenuate the high, but does that mean putf3ctB halfway between good and 
bad? Does it mean put it close to good? ... Close to bad? Should both good and bad be on 
a steeply-falling slope of the filter's response curve? 

0.7 

Vour 0.5" ..---
VzN 

0.1 

~J]J 
' 'Z kHz 

I k:Hz 

f,OlllJ 
Figure X2.3: Where should we putf3d8 ? Some possibilities 

/6kllz 

{BAI> 

Assuming that our goal is to achieve a large ratio of good to bad signal, then we should not 
put f 3cts close to the noise: if we did we would not do a good job of attenuating the bad. 
Halfway between is only a little better. Close to signal is the best idea: we will then 
attenuate the bad as much as possible while keeping the good, almost untouched. 

An alert person might notice that the greatest relative preference for good over bad comes 
when both are on the steepest part of the curve showing frequency response: in other words, 
putf3cts so low that both good and bad are attenuated. This is a clever answer-but wrong, 
in most settings. 

The trouble with that answer is that it assumes that the signal is a single frequency. 
Ordinarily the signal includes a range of frequencies, and it would be very bad to choose 
f 3cts somewhere within that range: the filter would distort signals. 

So, let's put f3dB at 2•fsignal: around 2kHz. This gives us 89% of the original signal 
amplitude (as you can confirm if you like with a phasor diagram or direct calculation). At 
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the same time we should be able to attenuate the 16kHz noise a good deal (we'll see in a 
moment how much). 

4 ... Choose C to achieve the iJdB that you want 

This is entirely mechanical: use the formula for the 3dB point: 
f3dB = 1/(21tRC) ==> C = 1/(21tf3dBR)"" 1/(6•2•103•10•103) = 1/(120•10.6) ""0.008·10-6F 

We might as well use a 0.01 JlF cap ("cap" = capacitor). It will put our f3dB about 25% 
low-1.6Khz; but our choice was a rough estimate anyway. 

5. By about how much does your filter attenuate the noise ("fuzz")? 

The quick way to get this answer is to count octaves or decades between f3dB and the 
noise. f3dB is 2kHz; the fuzz is around 16kHz: 8•f3dB· 

Count octaves: we could also say that the frequency is doubled three times ( = 23) between 
f3dB and the noise frequency. Roughly, that means that the fuzz amplitude is cut in half the 
same number of times: down to 1/(23): 1/8. 

This is only an approximate answer because a) near f3dB the curve has not yet reached its 
terminal steepness of -6dB/octave; b) on the other hand, even at f3dB• some attenuation 
occurs. But let's take our rough answer. (It happens that our rough answer is better than it 
deserves to be: we called VoulVin 0.125; the more exact answer is 0.124.) 

6. What happens to the circuit output if the load has resistance JOk rather than lOOk? 

Here's a picture of such loading. 

~ "iour: worst case: 

:l 
I -
L_ 

Figure X2.4: Overloaded filter 

If you have gotten used to Thevenin models, then you can see how to make this circuit look 
more familiar: 

T~ ·ff"''" ~ 
cut in half I DMpf 

Figure X2.5: Loaded circuit, redrawn 

The amplitude is down; but, worse, f3dB has changed: it has doubled. You will find a plot 
showing this effect at the start of the class notes for next time: Class 3. 
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7. What is the circuit's input impedance-

1. at very low frequencies? 
Answer: very large: the cap shows a high impedance; the signal source sees only 
the load-which is assumed very high impedance (high enough so we can neglect 
it as we think about the filter's performance) 

2. at very high frequencies? 
Answer: R: The cap impedance falls toward zero--but R puts a lower limit on the 
input impedance. 

3. at f 3dB? 

This is easy if you are willing to use phasors, a nuisance to calculate, otherwise. If you 
recall that the magnitude of Xc = R at f3dB• and if you accept the notion that the voltages 
across R and C are 90° out of phase, so that they can be drawn at right angles to each other 
on a phasor diagram, then you get the phasor diagram you saw in the class notes (fig. 
N2.21): 

/Jha.sor dt'a.J~arn: 
af f!rl/3 

7<, 

Figure X2.6: Phasor diagram showing an RC filter at its 3dB point 

-then you can use a geometric argument to show that the hypotenuse-proportional to 
Zin-is R~2. 

2. Bandpass 
Text exercise AE-6 
(Chapter 1) 

Problem: 

Bandpass filter 

Design a bandpass filter to pass signals between about 1.6 kHz and 8kHz 
(you may use these as 3dB frequencies) .. 

Assume that the next stage, which your bandpass filter is to drive, has 
an input impedance of 1 M ohms. 
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Figure X2.7: Bandpass frequency response 

Once you recognize that to get this frequency response from the filter you need to put high
pass and low-pass in series, the task is mechanical. You can put the two filters in either 
order. Now we need to choose R values, because these will determine worst-case 
impedances for the two filter stages. The later filter must show Zout low relative to the load, 
which is lMQ; the earlier filter must show Zout low relative to Zrn of the second filter stage. 

So, let the second-stageR= lOOk; the first-stageR= lOk: 

Choosing C's 

Here the only hard part is to get the filter's right: it's hard to say to oneself, 'The high
pass filter has the lower iJdB;' but that is correct. Here are the calculations: notice that we 
try to keep things in engineering notation-writing '1 0•103 ' rather than '104.' This form 
looks clumsy, but rewards you by delivering answers in standard units. It also helps you 
scan for nonsense in your formulation of the problem: it is easier to see that '1 0•1 Q3' is a 
good translation for '10k' than it is to see that, say, '105' is not a good translation. 

@ choose l?s 

10k~ 

.:·, > 7<'-"~D :: I M.ll 
·-1 

---'-

I 
1 fl!l&-HI~H = 1.of:tfz 

L 

(_::::. 2._ ""'T '¥)(!{) 1 . /IJ Xt0 3 I C = :J. 1T · /, J X 10 j · 0.1 X/0' 

I 
::0:. o\ X !Oj "'- 1.1 XID-j 

- 0.00!..;.<1" 

Figure X2.8: Calculating C values: a plug for engineering notation 
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A Note on Reading Capacitor Values 

Why you may need this note 

Most students learn pretty fast to read resistor values. They tend to have more trouble 
finding, say, a 100 pF capacitor. 

That's not their fault. They have trouble, as you will agree when you have finished 
reading this note, because the cap manufacturers don't want them to be able to read cap 
values. ("Cap" is shorthand for "capacitor," as you probably know.) The cap markings 
have been designed by an international committee to be nearly unintelligible. With a few 
hints, however, you can learn to read cap markings, despite the manufacturers' efforts. 
Here are our hints: 

Big Caps: electrolytics 
These are easy to read, because there is room to write the value on the cap, including 

units. You need only have the common sense to assume that 

~ 
Figure CAP.!: A big cap is labeled intelligibly 

means 500 micro farads, not what it would mean if you took the capital M seriously. 
All of these big caps are polarized, incidentally. That means the capacitor's innards are 

not symmetrical, and that you may destroy the cap if you apply the wrong polarity to the 
terminals: the terminal marked + must be at least as positive as the other terminal. 
(Sometimes, violating this rule will generate gas that makes the cap blow up; more often, 
you will find the cap internally shorted, after a while. Often, you could get away with 
violating this rule, at low voltages. But don't try.) 

Smaller Caps 

As the caps get smaller, the difficulty in reading their markings gets steadily worse. 

Tantalum 
These are the silver colored cylinders. They are polarized: a + mark and a metal nipple 

mark the positive end. Their markings may say something like 

~ 
Figure CAP .2: Tantalum cap 

That means pretty much what it says, if you know that the "R" marks the decimal place: it's 
a 4.7 J.l.F cap. 

The same cap is also marked, 

~ 
Figure CAP .3: Tantalum cap: second marking scheme on same part 

Here you meet your first challenge, but also the first appearance of an orderly scheme for 
labeling caps, a scheme that would be helpful if it were used more widely. 

The challenge is to resist the plausible assumption that "k" means "kilo." It does not; it is 
not a unit marking, but a tolerance notation (it means ± 10% ). (Wasn't that nasty of the 
labelers to choose "K?" Guess what's another favorite letter for tolerance. That's right: M. 
Pretty mean!) 
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The orderly labeling here mimics the resistor codes: 475 means 
47 x ten to the fifth. 

What units? 
105 what? 105 of something small. You will meet this question repeatedly, and you must 

resolve it by relying on a few observations: 

1. The only units commonly used in this country are 

• microfarads: 10-6 Farad 
• picofarads: 10-12 Farad 

(You should, therefore, avoid using "mF' and "nF," yourself.) 
A Farad is a huge unit. The biggest cap you will use in this course is 500 Jl.F. That 
cap is physically large. (We do keep a IF cap around, but only for our freak show.) 
So, if you find a little cap labeled "680," you know it's 680 pF. 

2. A picofarad is a tiny unit. You will not see a cap as small as 1 pF in this course. 
So, if you find a cap claiming that it is a fraction of some unstated 
unit-say,".Ol"-the unit is Jl.F's: ".01" means O.OlJ.lF. 

3. Beware the wrong assumption that a picofarad is only a bit smaller than a 
microfarad. A pF is not 10-9 F (l0-3 Jl.F); instead, it is J0-12F: a million times 
smaller than a microfarad. 

So, we conclude, this cap labeled "475" must be 4.7x106 picofarads. That, you will 
recognize, is a roundabout way to say 

4.7 x 10-6 F 
We knew that was the answer, before we started this last decoding effort. This way of 
labeling is indeed roundabout, but at least it is unambiguous. It would be nice to see it used 
more widely. You will see another example of this exponential labeling in the case of the 
CK05 ceramics, below. 

Mylar 

These are yellow cylinders, pretty clearly marked .. OIM is just 0.01 Jl.F, of course; and 
.1 MFD is not a tenth of a megafarad. These caps are not polarized; the black band marks 
the outer end of the foil winding. We don't worry about that fine point. Orient them at 
random in your circuits. 

~ 
Figure CAP.4: Mylar capacitor 

Because they are long coils of metal foil (separated by a thing dielectric-the 
"mylar" that gives them their name), mylar caps must betray their coil-like construction at 
very high frequencies: that is, they begin to fail as capacitors, behaving instead like 
inductors, blocking the very high frequencies they ought to pass. Ceramics (below) do 
better in this respect, though they are poor in other characteristics. 
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Ceramic 
These are little orange pancakes. Because of this shape (in contrast to the coil format 

hidden within the tubular shape of mylars) they act like capacitors even at high frequencies. 
The trick, in reading these, is to reject the markings that can't be units: 

Disc 

CKOS 

® 
Z5U 
,02M 
lkV 

Figure CAP.S: Disc capacitor markings 

ZSU: Not a unit marking: cap type 

.02M, 560M That's it: the M is a 
tolerance marking, as you know (± 20% ); 
not a unit 
Common sense tells you units: 
".02?" microfarads. "560?" picofarads. 
lk V Not a unit marking. Instead, 
this means-as you would guess-that 
the cap can stand 1000 volts. 

These are little boxes, with their leads 0.2" apart. They are handy, therefore, for 
insertion into a printed circuit. 

~ 

ICKOS 
101K 
200V lOlk: This is the neat resistor-like 

marking. This one is 100 pF. 

Figure CAP.6: CKOS capacitor markings 

Tolerance Codes 

Just to be thorough-and because this information is hard to come by-let's list all the 
tolerance codes. These apply to both capacitors and resistors; the tight tolerances are 
relevant only to resistors; the strangely-asymmetric tolerance is used only for capacitors. 

Tolerance Code 
z 

M 
K 
J 
G 
F 
D 
c 
B 
A 
z 

N 

Meaning 
+80%, -20% (for big filter capacitors, where you are assumed 

to have asymmetric worries: too small a cap 
allows excessive "ripple;" more on this in Lab 
3 and Notes 3) 

±20% 
± 10% 
±5% 
±2% 
±1% 
±0.5% 
±0.25% 
±0.1% 
±0.05% 
± 0.025 (precision resistors; context will show the asymmetric 

cap tolerance "Z" makes no sense here) 
±0.02% 

Figure CAP.7: Tolerance codes 
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Reading: 

Problems: 

Lab 2: Capacitors 

Chapter 1.12- 1.21, pp. 20-40; 
omit "Power in reactive circuits", pp. 33-35. 
Appendix B (if you need it). 
Warning: This is by far the most 
mathematical portion of the course. Don't 
panic. Even if you don't understand the math, 
you'll be able to understand the rest of the 
book. 
Student Manual note on reading capacitor 
values (Manual, pp. 51-53) 

Problems in text. 
Additional Exercises 3-6. 

2-1 RC Circuit 

Figure L2.1: RC Circuit: step response 

Verify that the RC circuit behaves in the time domain as described in Text sec. 1.13. In 
particular, construct the circuit above. Use a mylar capacitor (yellow tubular package, with 
one lead sticking out each end: "axial leads"). Drive the circuit with a 500Hz square wave, 
and look at the output. Be sure to use the scope's DC input setting. (Remember the 
warning about the AC setting, last time?) 

Measure the time constant by determining the time for the output to drop to 37%. Does it 
equal the product RC? 

Suggestion: The percent markings over at the left edge of the scope 
screen are made-to-order for this task: put the foot of the square wave on 
0%, the top on 100%. Then crank up the sweep rate so that you use most 
of the screen for the fall from 100% to around 3 7%. 

Measure the time to climb from 0% to 63%. Is it the same as the time to fall to 37%? (If 
not, something is amiss in your way of taking these readings!) 

Try varying the frequency of the square wave. 
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2-2 Differentiator 

Figure L2.2: RC differentiator 
Construct the RC differentiator shown above. Drive it with a square wave at 100kHz, using 
the function generator with its attenuator set to 20dB. Does the output make sense? Try a 
100kHz triangle wave. Try a sine. 

Input Impedance 

Here's your first chance to try getting used to quick worst-case impedance calculations, 
rather than exact and frequency-dependent calculations (which often are almost useless). 

What is the impedance presented to the signal generator by the circuit (assume no 
load at the circuit's output) at f = 0? 
At infinite frequency? 

Questions like this become important when the signal source is less ideal than the 
function generators you are using. 

2-3 Integrator 
lok 

out 

Figure L2.3: RC integrator 
Construct the integrator shown above. Drive it with a 100kHz square wave at maximum 
output level (attenuator set at OdB). 

What is the input impedance at de? At infinite frequency? Drive it with a triangle wave; 
what is the output waveform called? (Doesn't this circuit seem clever? Doesn't it 
remember its elementary calculus better than you do-or at least faster?) 

To expose this as only an approximate or conditional integrator, try dropping the input 
frequency. Are we violating the stated condition (sec. 1.15): 

Vout « Vin? 
The differentiator is similarly approximate, and fails unless (sec. 1.14): 

dV ou/dt « dV in/dt 
In a differentiator, RC too large tends to violate this restriction. If you are extra zealous you 
may want to look again at the differentiator of experiment 2-2, but this time increasing RC 
by a factor of, say, 1000. The "derivative" of the square wave gets ugly, and this will not 
surprise you; the derivative of the triangle looks odd in a less obvious way. 

When we meet operational amplifiers in Chapter 3, we will see how to make "perfect" 
differentiators and integrators-those that let us lift the restrictions we have imposed on 

· these RC versions. 
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2-4 Low-pass Filter 

Figure L2.4: RC low-pass filter 

Construct the low-pass filter shown above. 

Aside: "Integrator" versus "Low-pass Filter" 
'Wait a minute!,' you may be protesting, 'Didn't I just build this circuit?' Yes, 

you did. Then why do it again? We expect that you will gradually divine the 
answer to that question as you work your way through this experiment. One of 
the two experiments might be called a special case of the other. When you 
finish, try to determine which is which.) 

What do you calculate to be the filter's -3dB frequency? Drive the circuit with a sine 
wave, sweeping over a large frequency range, to observe its low-pass property; the 1kHz 
and 1OkHz ranges should be most useful. 

Find f_3dB experimentally: measure the frequency at which the filter attenuates by 3dB 
(vout down to 70.7% of full amplitude). 

Note: henceforth we will refer to "the 3dB point" and "f3d8 ," henceforth, not 
to the minus 3dB point, or f_3dB· This usage is confusing but conventional; you 
might as well start getting used to it. 

What is the limiting phase shift, both at very low frequencies and at very high 
frequencies? 

Suggestion: 

As you measure phase shift, use the function generator's SYNC or TTL 
output to drive the scope's External Trigger. That will define the input 
phase cleanly. Then use the scope's variable sweep rate so as to make a 
full period of the input waveform use exactly 8 divisions (or centimeters). 
The output signal, viewed at the same time, should reveal its phase shift 
readily. 

Check to see if the low-pass filter attenuates 6dB/octave for frequencies well above the 
-3dB point; in particular, measure the output at 10 and 20 times f3dB· While you're at it, 
look at phase shift vs frequency: What is the phase shift for 

f « f3dB• 
f = f3dB• 
f » f3dB? 
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Finally, measure the attenuation at f = 2f3dB and write down the attenuation figures at f = 
2f3dB• f = 4f3dB and f = 10f3dB for later use: in section 2-9, below, we will compare this filter 
against one that shows a steeper rolloff. 

Sweeping Frequencies 

This circuit is a good one to look at with the function generator's sweep 
feature. This will let your scope draw you a plot of amplitude versus 
frequency instead of amplitu,de versus time as usual. If you have a little 
extra time, we recommend this exercise. If you feel pressed for time, save 
this task for next time, when the LC resonant circuit offers you another 
good target for sweeping. 

To generate such a display of V0 ut versus frequency, let the generator's 
ramp output drive the scope's horizontal deflection, with the scope in "X
Y'' mode: in X-Y, the scope ignores its internal horizontal deflection ramp 
(or "timebase") and instead lets the input labeled "X" determine the spot's 
horizontal position. 

The function generator's ramp time control now will determine sweep 
rate. Keep the ramp slow: a slow ramp produces a scope image that is 
annoyingly intermittent, but gives the truest, prettiest picture, since the 
slow ramp allows more cycles in a given frequency range than are 
permitted by a faster ramp. 

2-5 High-pass Filter ,QlJAF 

lrt 

~T 
ovt 

-;-

Figure L2.5: RC high-pass filter 

Construct a high-pass filter with the components that you used for the low-pass. Where is 
this circuit's 3dB point? Check out how the circuit treats sine waves: Check to see if the 
output amplitude at low frequencies (well below the -3dB point) is proportional to 
frequency. What is the limiting phase shift, both at very low frequencies and at very high 
frequencies? 

2-6 Filter Application 1: Garbage Detector 

6.3Voc.. 7 

7ho"s~rmet-
Figure L2.6: High-pass filter applied to the 60Hz ac power 

The circuit above will let you see the "garbage" on the 110-volt power line. First look at 
the output of the transformer, at A. It should look more or less like a classical sine wave. 
(The transformer, incidentally, serves two purposes- it reduces the llOVac to a more 
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reasonable 6.3V, and it "isolates" the circuit we're working on from the potentially lethal 
power line voltage) 

To see glitches and wiggles, look at B, the output of the high-pass filter. All kinds of 
interesting stuff should appear, some of it curiously time-dependent. What is the filter's 
attenuation at 60Hz? (No complex arithmetic necessary. Hint: count octaves, or use the 
fact-which you confirmed just above-that amplitude grows linearly with frequency, well 
below f3dB·) 

2-7 Filter Application ll: Selecting signal from signal plus noise 

Figure L2.7: Composite signal, consisting of two sine waves. (The lk resistor protects the function generator in case the 
composite output is accidentally shorted to ground) 

Now we will try using high-pass and then low-pass filters to prefer one frequency range or 
the other in a composite signal, formed as shown in the figure above. The transformer adds 
a large 60Hz sine wave (peak value about 10 volts) to the output of the function generator. 

Run this composite signal through the high-pass filter shown below . 
• o1?F 

1n ---1 ~ out 

14.7k 
Figure L2.8: High-pass filter 

Look at the resulting signal. Calculate the filter's 3dB point. 
Is the attenuation of the 60Hz waveform about what you would expect? Note that this 

time the 60Hz is considered "noise." (In fact, as you will gather gradually, this is the most 
common and troublesome source of noise in the lab.) 

15ok 
Jn~out 

I ,01)'F 

Figure L2.9: Low-pass filter 

Now run the composite signal through the low-pass filter shown above, instead of running it 
through the high-pass. Look at the resulting signal. Calculate this circuit's 3dB point. Why 
were the 3dB frequencies chosen where they were? 
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2-8 Blocking Capacitor 

(A) 
+l,volfs 

,, 0 ) + 

4.7,... I= 
( '»ofe polar;t'J) 

Figure L2.10: Blocking capacitor 

(13) 

' --'-
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Capacitors are used very often to "block" de while coupling an ac signal. The circuit 
above does this. You can think of it as a high-pass filter, with all signals of interest well 
above the 3dB point. This way of describing what the circuit does is subtly different from 
the way one usually speaks of a filter: the filter's job is to prefer a range of good 
frequencies, while attenuating another range, the "noise." The blocking capacitor is doing 
something different; its mission is not to attenuate evil low frequencies; its mission, instead, 
is simply to block the irrelevant de. (Once again the alert and skeptical student may be 
objecting, 'I've built this circuit twice before. You keep re-naming it and asking me to build 
it again: "differentiator," "high-pass," and now "blocking capacitor.' Again we must 
answer that it is the same circuit, but it is applied differently from the others.) 

To see this application in action, wire up the circuitry labeled "A," above: the left side of 
the circuit. 

Drive it with the function generator, and look at the output on the scope, de coupled, as 
usual. The circuit lets the ac signal "ride" on +5 volts. Next, add the circuitry labeled "B," 
above (another blocking capacitor), and observe the signal back at ground. What is the low 
frequency limit for this blocking circuit? 

This circuit fragment you have just built looks quite useless. 
As it stands, it is useless, since it gets you back where you started, doing nothing useful 

between. Next time you will see applications for this kind of circuit. The difference will be 
that you will do something useful to the signal after getting it to ride on, say, +5 volts. 

2-9 LC Filter 

tn ovt 

Figure L2.11: 5-pole Butterworth low-pass filter, designed using the procedure of Appendix H 

It is possible to construct filters (high pass, low pass, etc.) with a frequency response that 
is far more abrupt than the response of the simple RC filters you have been building, by 
combining inductors with capacitors, or by using amplifiers or electronic switching (the 
latter two types are called "active filters"-see Chapter 5 in the text-or "switched 
capacitor'' types--see sec. 5.11, p. 281ff). 

To get a taste of what can be done, try the filter shown above. It should have a 3dB point 
of about 16kHz, and V0 ut should drop like a rock at higher frequencies. Measure its 3dB 
frequency, then measure its response at f = 2f3dB and at f = 10f3da-if you can; you may not 
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be able to see any response beyond about 4xf3dB· Compare these measurements against the 
rather "soft" response of the RC low-pass filter you measured in section 2.4, and against the 
calculated response (i.e., ratio of output amplitude to input amplitude) of the two filters 
shown in the table below. 

By far the best way to enjoy the performance of this filter is to sweep the frequency in, as 
suggested in section 2-4, above. You may, incidentally, find the theoretically-flat 
"passband" -the frequency range where the filter passes nearly all the signal- not quite 
flat; a slope or bump here results from our settling for standard values of R and C, and 10% 
capacitors, rather than using exactly the values called for. 

Note: One must give a common-sense redefinition to "f3ds" of this LC filter, 
because the filter attenuates to 1/2 amplitude even at DC. One must define the 
LC's 3dB point as the frequency at which the output amplitude is down 3dB 
relative to its amplitude at DC. This is not the last time you will need to 
modify the meaning of "3dB point" to give it a common sense reading. You 
will do so again when you meet amplifiers, for example, and discuss their 
frequency responses. 

Rolloff of two filters: 5-Qole vs simQle RC 

Frequency: 0 f3dB 2f3dB 4f3dB 10f3dB 

RC 1.0 0.71 0.45 0.24 0.10 

5-pole 1.0 0.71 0.031 0.001 0.00001 
Figure L2.U: Amplitude out vs amplitude-at-IX: RC filter vs 5-pole LC filter 

Optional: Contrast Ordinary RC against 5-Pole LC Filter 

To appreciate how good the 5-pole filter is, it helps a lot to watch it against an ordinary 
RC filter. Here is an ordinary RC low-pass filter with f3dB the same as the Butterworth's: 
about 16 kHz. 

i2.k 

~ 
0.001)'-F I 

Figure L2.13: RC low pass with f3dB matched to the LC filter's 

Sweep the input frequency, and watch the outputs of the two filters simultaneously on the 
scope's two channels. This will challenge your scopesmanship: you no longer can use X-Y 
mode; instead you will need to use the function generator's ramp to trigger the scope. 



Topics: 

• old: 

new: 

Old: 

Class 3: Diode Circuits 

Once again, the problem of A driving B; this time, A is frequency
dependent 

scope probe; designing it; Fourier helps us check probe compensation 

LC circuit: highly selective; fun to use as "Fourier analyzer" 

Diode circuits 

Remember our claim that our 1 Ox rule of thumb would let us design circuit fragments? 
Let's confirm it by watching what happens to a filter when we violate the rule. 
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Suppose we have a low-pass filter, designed to give us f3dB a bit over 1kHz (this is a filter 
you built last time, you'll recall): 

IS K 7.51<. 

~ I 0.01 f'F V100> 
Figure N3.1: RC low-pass: not loaded versus loaded; redrawn to simplify 

If Rload is around 150k or more, the load attenuates the signal only slightly, and f3dB stays 
put. But what happens if we make Rload 15k? Attenuation is the lesser of the two bad 
effects. Look at what happens to f3ctB: 

o.7 

Figure N3.2: Excessive loading shifts f3dB 
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New: 

A. Scope Probe 
Text exercise AE-8 (Ch 1) 
Lab 3-8 

Class 3: Diode Circuits 

That mishap leads nicely into the problem of how to design a scope probe. 

N3-2 

Until now, we have fed the scope with BNC cables. They work, but at middling to high 
frequencies they don't work well. Their heavy capacitance (about 30 pF/foot) burdens the 
circuits you look at, and may make those circuits misbehave in strange ways--oscillating, 
for example. So, we nearly always use "lOx" probes with a scope: that's a probe that makes 
the scope's input impedance lOx that of the bare scope. (The bare scope looks like lMQ 
parallel about 120pF-cable and scope.) 

Here is a defective design for a 1 Ox probe: 

1M 

I~J SCOPE 

110 pF I (STRAY C) 

Figure N3.3: Crummy lOx probe 

Do you see what's wrong? It works fine at DC. But try redrawing it as a Thevenin model 
driving a cap to ground, as in the example we did at the start of these notes. The flaw 
should appear. What is f3dB? 
Remedy 

We need to make sure our probe does not have this low-pass effect: scope and probe 
should treat alike all frequencies of interest (the upper limit is set by the scope's maximum 
frequency: for most in our lab that is up to 50 or 60 MHz; a few are good to 100 MHz). 

The trick is just to build two voltage dividers in parallel: one resistive, the other 
capacitive. At the two frequency extremes one or the other dominates (that is, passes most 
of the current); in between, they share. But if each delivers Vin/10, nothing complicated 
happens in this "in-between" range. 

Figure N3.4: Two dividers to deliver V mflO to the scope 
What happens if we simply join the outputs of the two dividers? Do we have to analyze the 
resulting composite circuit as one, fairly messy thing? No. No current flows along the line 
that joins the two dividers, so things remain utterly simple. 
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So, a good probe is just these two dividers joined: 

'/M 13 pF 

Figure N3.5: A good xlO probe: one capacitor is trimmable, to allow use with scopes that differ in Cin 

Practical probes make the probe's added C adjustable. This adjustment raises a question: 
how do you know if the probe is properly adjusted, so that it treats all frequencies alike? 

Probe "compensation: Fourier again 

One way to check the frequency response of probe and scope, together, would be to 
sweep frequencies from DC to the top of the scope's range, and watch the amplitude the 
scope showed. But that requires a good function generator, and would be a nuisance to set 
up each time you wanted to check a probe. 

The easier way to do the same task is just to feed scope and probe a square wave, and 
then look to see whether it looks square on the scope screen. If it does, good: all 
frequencies are treated alike. If it does not look square, just adjust the trimmable C in the 
probe until the waveform does look square. 

--ILJ GOOD 

Figure N3.6: Using square wave to check frequency response of probe and scope 

Neat? This is so clearly the efficient way to check probe compensation (as the adjustment 
of the probe's Cis called) that every respectable scope offers a square wave on its front 
panel. It's labeled something like probe comp or probe adjust. It's a small square wave at 
around 1kHz. 
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B. Applying Lab 3's LC resonant circuit 
Text sec.1.22 
fig.1.63 

Vwr 

c 

10 

~ 
v ... 

f.=;_~.JLc f 

Figure N3.7: Lab 3's LC circuit, and its frequency response (generic) 

N3-4 

As the lab notes point out, this circuit is highly selective, passing a narrow range of 
frequencies (the characteristic called "Q" describes how narrow: Q = fo I N3dB:f0 is the 
resonant frequency-the favored frequency; N is the width at the amplitude that delivers 
half-power). It's entertaining to apply the circuit so as to confirm one of Fourier's claims. 
Here is an excerpt from those lab notes. Let's make sure we agree on what's proposed 
there. 

Finding Fourier Components of a Square Wave 

This resonant circuit can serve as a "Fourier Analyzer:" the circuit's response measures the 
amount of 16kHz (approx.) present in an input waveform. 

Try driving the circuit with a square wave at the resonant frequency; note the amplitude of 
the (sine wave) response. Now gradually lower the driving frequency until you get another 
peak response (it should occur at 1/3 the resonant frequency) and check the amplitude (it 
should be 1/3 the amplitude of the fundamental response). With some care you can verify the 
amplitude and frequency of the first five or six terms of the fuurier series. Can you think of a 
way to calculate pi with this circuit? 

Here is a reminder of the fuurier series for a square wave: 

-1 

Figure N3.8: Fourier series for square wave 

Classier: Frequency Spectrum Display 

If you sweep the square wave input to your 16kHz-detector, you get a sort of inverse 
frequency spectrum: you should see a big bump at fresonance , a smaller bump at 1/3 fresonance , 
and so on. 

Our detector-frequency is fixed. The square wave frequency changes. We get one or 
another of the several frequency components of the square wave. Make sense? 



N3-5 Class 3: Diode Circuits 65 

C. Diode Circuits 

Diodes do a new and useful trick for us: they allow current to flow in one direction only: - ~ (~es) ... (no) 
The symbol looks like a one-way street sign, and that's handy: it's telling conventional 
current which way to go. For many applications, it is enough to think of the diode as a 
one-way current valve; you need to note, too, that when it conducts current it also shows a 
characteristic "diode drop": about 0.6 v. This you saw in Lab 1. Here's a reminder of the 
curve you drew on that first day: 

Text sec. 1.25 
fig.1.67 

-looY -S"OV 

·Sr.aJ:J.- • 
Jfar ~way. 

f.~ oroli~ar~ 
./iodts 

1/fA -

1V 2.V 

NOTE 
SCALE 
CHANt;£( 

Figure N3.9: Diode/-V curve (reverse current is exaggerated by change of scale in this plot) 

We often use diodes within voltage dividers, much the way we have used resistors, and 
then capacitors. Here is a set of such dividers: what should the outputs look like? 

fl_D':_ -v-v 
s.6v/Y ___ /\ __ 

~:-=-bl--~ -o.6v -

Figure N3.10: 3 dividers made with diodes: one rectifier, two clamps 

The outputs for the first two circuits look strikingly similar. Yet only the rectifier is used to 
generate the DC voltage needed in a power supply. Why? What important difference 
exists-invisible to the scope display-between the "rectifier" and the "clamp?" 

The bumpy output of the "rectifier" is still pretty far from what we need to make a 
power-supply-a circuit that converts the AC voltage that comes from the wall or "line" to 
a DC level. A capacitor will smooth the rectifier's output for us. But, first, let's look at a 
better version of the rectifier: 
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Full-wave bridge rectifier 

This clever circuit gives a second bump out, on the negative swing of the input voltage. 
Clever, isn't it? Once you have seen this output, you can see why the simpler rectifier is 
called half-wave. 

RLOA!> 

Figure N3.11: Full-wave bridge rectifier 

Rarely is there an excuse for using anything other than a full-wave bridge in a power 
supply, these days. Once upon a time, "diode" meant a $5 vacuum tube, and then designers 
tried to limit the number of these that they used. Now you just buy the bridge: a little epoxy 
package with four diodes and four legs; a big one may cost you a dollar. In a minute, we'll 
proceed to looking at a full power supply circuit, which will include one of these bridges. 
But before we do, let's note one additional sort of diode: the zener. 

Zener diodes 
Text sec. 2.041 

Here is the I-V curve for a zener, a diode that breaks down at some low reverse voltage, 
and likes to! If you put it into a voltage divider "backwards"-that is, "back-biased:" with 
the voltage running the wrong way on the one-way street-you can form a circuit whose 
output voltage is pretty nearly constant, despite variation on the input, and despite variation 
in loading. 

Figure N3.12: Zener voltage source (Text fig. 2.11) 

Here is a chance to use a subtler view of the diode's behavior. A closer look at the diode's 
curve will show us, for example, why we need to follow the text's rule of thumb that says 
'keep at least 10 rnA flowing in the zener, even when the circuit is loaded.' 

1. Yes, this is a forward reference; we'd just like you to think at one time about all the diodes that you'll meet. 
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Figure N3.13: Zener diode 1-V curve; turned on its side to reveal impedances 
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The curve turned on its side shows a slope that is L1 V/L1I-the device's dynamic resistance. 
That value describes how good a voltage reference the zener is: how much the output 
voltage will vary as current varies. (Here, current varies because of two effects: variation of 
input voltage, and variation in output current, or loading.) Can you see how badly the diode 
would perform if you wandered up into the region of the curve where /zener was very small? 

We'll show you a worked example of such a zener reference (in another section of these 
notes)-and then we'll drop the subject for a while. A practical voltage source would never 
(well, hardy ever!) use a naked zener like the one we just showed you; it would always 
include a transistor or op-amp circuit after the zener, so as to limit the variation in output 
current (see Chapter 2, sec. 2.04, when you get there). The voltage regulators discussed in 
Chapter 6 used just such a scheme. At least you should understand those circuits the better 
for having glimpsed a zener today. Now on to the diode application you will see most· 
often. 

The Most Important Diode Application: Power Supply 

Here is a standard unregulated power supply circuit (we'lllearn later just what 
"unregulated" means: we can't understand fully until we meet regulated supplies): 

Text sec. 6.11, 
fig. 6.17. 

~ 110v~, 

G I I 
bleed~ 

Figure N3.14: AC-"line"-to-DC Power Supply Circuit 

Now we'lllook at a way to choose component values. In these notes, we will do the job 
incompletely, as if we were just sketching a supply; in a worked example you will find a 
similar case done more thoroughly. 
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Assume we aim for the following specifications: 

• v out: about 12 volts 
• Ripple: about 1 volt 

• Rload: 120.Q 

We must choose the following values: 

• C size (JlF) 

• transformer voltage (VRMs) 

• fuse rating 

We will postpone until the Worked Example two less fundamental tasks (because often a 
ball-park guess will do): specify: 

• transformer current rating 

• "bleeder" resistor value 

Let's start, doing this in stages. Surely you should begin by drawing the circuit without 
component values, as we did above. 

1. Transformer Voltage: 
Compare Text sec. 6.12 

This is just Vout plus the voltage lost across the rectifier bridge. The bridge always puts 2 
diodes in the path. Specify as rms voltage: for a sine wave, that means (1!"'<'2)(Vpeak ). 

p-.ak,-to-~-1<. ripple. 

j_ output urllle.r l~>ad -- ~ ---~ 
"t- olitput w\thovt t~p 

~ 

Figure N3.15: Transformer voltage, given Vout,.... 

Here, that gives V peak at the transformer of about 14V == lOV rms 

2. Capacitor: 
Compare Text sec. 6.13 

This is the interesting part. This task could be hard, but we'll make it pretty easy by 
using two simplifying assumptions. 

Here is what the "ripple" waveform will look like: 
Text sec.l.28, 
fig.l.73,p. 46 

- exact sl~>pe 
(exponent tal 
deca~ curve) 

Figure N3.16: Ripple 
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We can figure the ripple (or choose a C for a specified ripple, as in this problem) by using 
the general equation 

I= C dV!dt 
"dV" or 11 V is ripple; "dt" or 11 T is the time during which the cap discharges; "I'' is the 
current taken out of the supply. (You can, instead, memorize the Text's ripple formula; but 
that's probably a waste of memory space.) 
To specify exactly the C that will allow a specified amount of ripple at the stated maximum 
load requires some thought. Specifically, 

• What is /out? If the load is resistive, the current out is not constant, but decays 
exponentially each half-cycle. 

• What is 11 T? That is, for how long does the cap discharge (before the transformer 
voltage comes up again to charge it)? 

We will, as usual, coolly sidestep these difficulties with some worst-case approximations: 

• We assume /out is constant, at its maximum value; 

• We assume the cap is discharged for the full time between peaks. 

Both these approximations tend to overstate the ripple we will get. Since ripple is not a 
good thing, we don't mind building a circuit that delivers a bit less ripple than called for. 

Try those approximations here: 

• lout is just /out-max: 100 rnA 

• 11T is 112 the period of the 60Hz input waveform: 11120Hz === 8 ms. 

What cap size does this imply? 

C =I 11T I 11 V === 0.1 • 8·10-3 I 1 V === 0.8·10-3F = 800 j.lF. 

That may sound big; it isn't, for a power supply filter. 

3. Fuse Rating 
The current in the primary is smaller than the current in the secondary, by about the same 

ratio as the primary voltage is larger. (This occurs because the transformer dissipates little 
power: Pin =Pout·) 

110 v 
@ 0 091l 

~v 
t___itA 

"{ voi+B-1e steps dow,, 

u.<r,..,nt ste.ps "'f· 

Figure N3.17: Transformer preserves power, roughly; so, a 'step down' transformer draws less current than it puts out 

In the present case, where the voltage is stepped down about 11x, the primary current is 
lower than the secondary current by about the same factor. So, for 100 rnA out, about 9mA 
must flow in the primary. 
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RMS Heating 
Text sec. 1.28, 
p. 47; compare exercise 1.28 
and figure 1. 76 

Class 3: Diode Circuits N3-10 

In fact, the fuse feels its "9 rnA" as somewhat more, because it comes in surges (see the 
Text at p.47, and Worked Example below); call it 20 rnA. And we don't want the fuse to 
blow under the maximum-current load. So, use a fuse that blows at perhaps 4X the 
maximum 1001, adjusted for its heating effect: 80 rnA. A 100 rnA, or 0.1 A fuse is a pretty 
standard value, and we'd be content with that. The value is not critical, since the fuse is for 
emergencies, in which very large currents can be expected. 

It's a good idea to use a slow-blow type, since on power-up a large initial current charges 
the filter capacitor, and we don't want the fuse to blow each time you turn on the supply. 
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Chapter 1: Worked Example: Power Supply 

Another Power Supply 

Here we will do a problem much like the one we did more sketchily in the Notes for 
Class 3. If you are comfortable with the design process, skip to sections 5 and 6, below, 
where we meet some new issues. 

We are to design a standard unregulated power supply circuit (we'llleam later just what 
"unregulated" means when we meet voltage regulators in Chapter 6). In this example we 
will look a little more closely than we did in class, at the way to choose component values. 
Here's the particular problem: 

Problem: Unregulated power supply 

Design a power supply to convert llOVAC 'line' voltage to DC. Aim 
for the following specifications: 

• vout: no less than 20 volts 

• Ripple: about 2 volts 

• /load: lA (maximum) 

Choose-

• C size (J.lF) 

• transformer voltage (V rms) 

• fuse rating (/) 

• "bleeder" resistor value 

• transformer current rating 

Questions: What difference would you see in the circuit output-

• If you took the circuit to Europe and plugged it into a wall outlet: 
there, the line voltage is 220V, 50Hz. 

• If one diode in the bridge rectifier burned out (open, not shorted)? 

0. Skeleton Circuit 

First, as usual, we would draw the circuit without component values; you will find that 
figure in the Class Notes (fig. N3.14). Fuse goes on primary side, to protect against as many 
mishaps as possible-including failures of the transformer and switch. Always use a full
wave rectifier (a bridge); most of the half-wave rectifier circuits you see in textbooks are 
relics of the days when "diode" meant an expensive vacuum tube. Now that diode means a 
little hunk of silicon, and they come as an integrated bridge package, there's rarely an 
excuse for anything but a bridge. A "bleeder" resistor is useful in a lab power supply, 
which might have no load: you want to be able to count on finding close to 0 volts a few 
seconds after you shut power off. The bleeder achieves that. Many power supplies are 
always loaded, at least by a regulator and perhaps by the circuit they were built to power; 
these supplies are sure to discharge their filter capacitors promptly and need no bleeder. 
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1. Transformer Voltage: 
This is just the peak value of Vout plus the two diode drops imposed by the bridge 

rectifier, as usual. If Vout is to be 20V after ripple, then Vout(pcak) should be two volts more: 
around 22V. The transformer voltage then ought to be about 23V. 

When we specify the transformer we need to follow the convention that uses Vrms• not 
Vpcak CVrms defines the DC voltage that would deliver the same power as the particular 
waveform). For a sine wave, V rms is VPeaJ-/2, as you know. 

In this case, 
VpeaiJ-/2 = 23V/1.4 = 16Vrms 

This happens to be a standard transformer voltage. 
Text sec. 6.12, p. 329 

If it had not been standard, we would have needed to take the next higher standard value, 
or use a transformer with a 'tapped primary' that allows fine tuning of the step-down ratio. 

2. Capacitor: 
Here is the "ripple" waveform, again. We have labeled the drawing with reminders that 

L1t depends on circumstances: so, .!lt varies under the changed conditions suggesed in the 
questions that conclude this exercise. 

Figure X3.1: Ripple 
Using 

l=Cdv/dt 

we plug in what we know, and solve for C. We know-

• "dV" or~ V, the ripple, is 2V; 

• "dt" or L1 T is the time between peaks of the input waveform: l/(2•60Hz) "" 8 ms; 

• "I" is the peak output current: IA. (This specification of load current rather than 
load resistance may seem odd, at the moment. In fact, it is typical. The typical 
load for an unregulated supply is a regulator-a circuit that holds its output voltage 
constant; if the regulated supply drives a constant resistance, then it puts out a 
constant current despite the input ripple, and it thus draws a constant current from 
the filter capacitor at the same time). 

Putting these numbers together, we get: 
C = I·L1t/L1v = IA· 8•I0-3s I 2V = 40001-!F 

Big, but not unreasonably big. 

3. Fuse Rating 
This supply steps the voltage down from llOV to 16V; the current steps up 

proportionately: about 7•. So, the output (secondary) current of lA implies an input 
(primary) current of about 140mA. 

But this calculation of average input current understates the heating effect of the primary 
current, and of the primary and secondary currents in the transformer. Because these 
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currents come in surges, recharging the filter capacitor during only a part of the full cycle, 
the currents during the surges are large. These surges heat a fuse more than a steady current 
delivering the same power, so we need to boost the fuse rating by perhaps a factor of 2 to 4, 
and then another factor of about 2 to prevent fuse from blowing at full load. (It's designed 
for emergencies.) 

This set of rules of thumb carry us to something like-

fuse rating (current) ... 140mA • 4(for current surges) • 2 (not to blow under normal full load) 
... l.lA. 

A lA slow-blow would do. Why slow-blow? Because on power-up (when the supply first 
is turned on) the filter capacitor is charged rapidly in a few cycles; large currents then flow. 
A fuse designed to blow during a brief overload would blow every time the supply was 
turned on. The slow-blow has larger thermal mass: needs overcurrent for a longer time than 
the normal fuse, before it will blow. 

4. Bleeder Resistor 

Polite power supplies include such a resistor, or some other fixed load, so as not to 
surprise their users. Again the value is not critical. Use an R that discharges the filter cap in 
no more than a few seconds; don't use a tiny R that substantially loads the supply. 

Here, let's let RC =a few seconds. ==> R =a few/C .. lk 

Before we go on to consider a couple of new issues, let's just draw the circuit with the 
values we have chosen, so far: 

16 V rms 

~~---~ ~ [5)-1 
'fooopF 

Figure X3.2: Power supply: the usual circuit, with part values inserted 

5. Transformer Current Rating 

This is harder. The transformer provides brief surges of current into the cap. These heat 
the transformer more than a continuous flow of smaller current. Here is a sketch of current 
waveforms in relation to two possible ripple levels: 

I 

v 
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moderate ripple: 
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lrms = (1/5[5A]2) 112 = v5A = 2.2A 
tiny ripple: 

I 

I 

Irms = (l/20[20A]2])112 = v20A = 4.4A 
doubles transformer heating 

Figure X3.3: Transformer Current versus Ripple: Small Ripple==> Brief High-Current Pulses, and excessive heating 
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The left hand figure show current flowing for about 1/5 period, in pulses of SA, to replace 
the charge drained at the steady 1 A output rate. The right hand figure shows current 
flowing for 1/20 period, in pulses of 20 A. 

Moral: a little ripple is a good thing. You will see that this is so when you meet voltage 
regulators, which can reduce ripple by a factor between 1000 and 10,000. To say this 
another way, a volt of ripple out of the unregulated supply may look like less than a 
millivolt at the point where it goes to work (where the output of the regulated supply drives 
some load)! 

6. Questions: What difference would you see in the circuit output-

1. If you took it to Europe, where the line voltage is 220V, 50Hz? 

2. If one diode in the bridge rectifier burned out (open, not shorted)? 

Solutions: 

1. In Europe, the obvious effect would be a doubling of output voltage. That's likely to 
cook something driven by this supply (that's why American travelers often carry small 2:1 
step-down transformers). It might also cook transformer and filter capacitor, unless you had 
been very conservative in your design (it would be foolish, in fact, to specify a filter cap that 
could take double the anticipated voltage; caps grow substantially with the voltage they can 
tolerate). 

So you probably would not have a chance to get interested in less obvious changes in the 
power supply. But let's look at them anyway: the output ripple would change: ~T would be 
1150Hz = lOms, not 8ms. 

Ripple should grow proportionately. If load current remained constant, ripple should 
grow to about 2.5V. If the load were resistive, then load current would double with the 
output voltage, and ripple would double relative to the value just estimated: to around 5V. 

2. The burned out diode would make the bridge behave like a half-wave rectifier. ~t would 
double, so ripple amplitude would double, roughly. Ripple frequency would fall from 
120Hz to 60Hz. (This information might someday tell you what's wrong with an old radio: 
if it begins to buzz at you at 60Hz, perhaps half of the bridge has failed; if it buzzes at 
120Hz, probably the filter cap has failed. If you like such electronic detective work, many 
pleasures lie ahead of you.) 
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Problems: 

3-1. LC Resonant Circuit. 

Lab 3: Diode Circuits 

Finish Chapter 1, including "Power in reactive 
circuits" (pp 33-34) 

Appendix E 

Problems in text. 
Additional Exercises 7,8. 

ouf 

Figure L3.1: LC parallel resonant circuit 
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Construct the parallel resonant circuit shown above. Drive it with a sine wave, varying the 
frequency through a range that includes what you calculate to be the circuit's resonant 
frequency. Compare the resonant frequency that you observe with the one you calculated. 
(The circuit attenuates the signal considerably, even at its resonant frequency; the L is not 
perfectly efficient, but instead includes some series resistance.) 

Use the function-generator's sweep feature to show you a scope display of amplitude-out 
versus frequency. (See Lab 2 notes, if you need some advice on how to do this trick.) 

When you succeed in getting such a display of frequency response, try to explain why the 
display grows funny wiggles on one side of resonance as you increase the sweep rate. Clue: 
the funny wiggles appear on the side after the circuit has already been driven into resonant 
oscillation; the function generator there is driving an oscillating circuit. 

Finding Fourier Components of a Square Wave 

This resonant circuit can serve as a "Fourier Analyzer:" the circuit's response measures 
the amount of 16kHz (approx.) present in an input waveform. 

Try driving the circuit with a square wave at the resonant frequency; note the amplitude 
of the (sine wave) response. Now gradually lower the driving frequency until you get 
another peak response (it should occur at 1/3 the resonant frequency) and check the 
amplitude (it should be 1/3 the amplitude of the fundamental response). With some care 
you can verify the amplitude and frequency of the first five or six terms of the Fourier series. 
Can you think of a way to calculate pi with this circuit? 
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Here is a reminder of the Fourier series for a square wave: 

1 

-1 

Figure L3.2: Fourier series for square wave 

Classier: Frequency Spectrum Display 

If you sweep the square wave input to your 16kHz-detector, you get a sort of inverse 
frequency spectrum: you should see a big bump at [resonance , a smaller bump at l/3 [resonance , 
and so on. 

"Ringing" 
Now try driving the circuit with a low-frequency square wave: try 20Hz. You should see 

a brief output in response to each edge of the input square wave. If you look closely at this 
output, you can see that it is a decaying sine wave. (If you find the display dim, increase the 
square wave frequency to around 100Hz.) 

What is the frequency of this sine wave? (No surprise, here.) 

Why does it decay? Does it appear to decay exponentially? 

You will see such a response of an LC circuit to a step input whenever you happen to look 
at a square wave with an improperly grounded scope probe: when you fail to ground the 
probe close to the point you are probing, you force a ground current to flow through a long 
(inductive) path. Stray inductance and capacitance form a resonant circuit that produces 
ugly ringing. You might look for this effect now, if you are curious; or you might just wait 
for the day (almost sure to come) when you run into this effect inadvertently. 

3-2. Half-wave Rectifier. 
1N'W-t 

2.2.k 

Figure L3.3: Half-wave rectifier 

Construct a half-wave rectifier circuit with a 6.3Vac (rms) transformer and a 1N914 diode, 
as in the figure above. Connect a 2.2k load, and look at the output on the scope. Is it what 
you expect? Polarity? Why is Vpeak > 6.3V? (Don't be troubled if Vpeak is a bit more than 
6.3V •'-12: the transformer designers want to make sure your power supply gets at least 
what's advertised, even under heavy load; you're loading it very lightly.) 
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3-3. Full-wave Bridge Rectifier. 

~.3 Va.c 2.2.k 

Figure L3.4: Full-wave bridge 

Now construct a full-wave bridge circuit, as above. Be careful about polarities-the band 
on the diode indicates cathode, as in the figure. Look at the output waveform (but don't 
attempt to look at the input-the signal across the transformer's secondary-with the 
scope's other channel at the same time; this would require connecting the second "ground" 
lead of the scope to one side of the secondary. What disaster would that cause?). Does it 
make sense? Why is the peak amplitude less than in the last circuit? How much should it 
be? What would happen if you were to reverse any one of the four diodes? (Don't try it!). 

Don't be too gravely alarmed if you find yourself burning out diodes in this experiment. 
When a diode fails, does it usually fail open or closed? Do you see why diodes in this 
circuit usually fail in pairs-in a touching sort of suicide pact? 

Look at the region of the output waveform that is near zero volts. Why are there flat 
regions? Measure their duration, and explain. 

3-4. Ripple. 

Now connect a 15!1-F filter capacitor across the output (Important-observe polarity). 
Does the output make sense? Calculate what the "ripple" amplitude should be, then 
measure it. Does it agree? (If not, have you assumed the wrong discharge time, by a factor 
of 2?) 

Now put a 500!1-F capacitor across the output (again, be careful about polarity), and see if 
the ripple is reduced to the value you predict. This circuit is now a respectable voltage 
source, for loads of low current. To make a "power supply" of higher current capability, 
you'd use heftier diodes (e.g., 1N4002) and a larger capacitor. (In practice you would 
always follow the power supply with an active regulator, a circuit you will meet in Lab 12.) 

3-5. Signal Diodes. 

S'opF IN914 

,·" cr---j r---.---f----4.,..._-o ovt 

1k 2.'2k 

Figure L3.5: Rectified differentiator 

Use a diode to make a rectified differentiator, as in the figure above. Drive it with a 
square wave at 10kHz or so, at the function generator's maximum output amplitude. Look 
at input and output, using both scope channels. Does it make sense? What does the 2.2k 
load resistor do? Try removing it. 

Hint: You should see what appear to be RC discharge curves in both cases-with and 
without the 2.2k to ground. The challenge here is to figure out what determines the R and C 
that you are watching. 
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3-6. Diode Clamp. 

1k 

/AI9/'f 

Figure L3.6: Diode clamp 

Construct the simple diode clamp circuit shown just above. Drive it with a sine wave 
from your function generator, at maximum output amplitude, and observe the output. If you 
can see that the clamped voltage is not quite fiat, then you can see the effect of the diode's 
non-zero impedance. Perhaps you can estimate a value for this dynamic resistance (see 
Text sec. 1. ); try a triangle waveform, if you attempt this estimate. 

11< 

IN91'1 

Figure L3.7: Clamp with voltage divider reference 

Now try using a voltage divider as the clamping voltage, as shown just above. Drive the 
circuit with a large sine wave, and examine the peak of the output waveform. Why is it 
rounded so much? (Hint: What is the impedance of the "voltage source" provided by the 
voltage divider? If you are puzzled, try drawing a Thevenin model for the whole circuit. 
Incidentally, this circuit is probably best analyzed in the time domain.) To check your 
explanation, drive the circuit with a triangle wave; compare with figure 1.83 in the text. 

As a remedy, try adding a lS)lF capacitor, as shown with dotted lines (note polarity). 
Try it out. Explain to your satisfaction why it works. (Here, you might use either a time- or 
frequency-domain argument.) This case illustrates well the concept of a bypass capacitor. 
What is it bypassing, and why? 

3-7. Diode Limiter. 

in 

Figure L3.8: Diode limiter 

Build the simple diode limiter shown above. Drive it with sines, triangles, and square 
waves of various amplitudes. Describe what it does, and why. Can you think of a use for 
it? 
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3-8. Impedances of Test Instruments. 
We mentioned in the first lab that measuring instruments (voltmeters, ammeters) ideally 

should leave the measured circuit unaffected. For instance, this implies an infinite 
impedance for voltmeters, and zero impedance for ammeters. Likewise, an oscilloscope 
should present an infinite input impedance, while power supplies and function generators 
should be zero-impedance sources. 

Begin by measuring the internal resistance of the VOM on its lOV de range. You won't 
need anything more than a de voltage and a resistor, if you're clever. 

Next try the same measurement on the 50V de range. Make sense? (Most needle-type 
YOM's are marked with a phrase such as "20,000 ohms per volt" on their de voltage ranges; 
remember this, from the first class?). For further enlightenment, see the Box on 
Multimeters (text pp. 9-10). 

Now use a similar trick to measure the input resistance of the scope. Remember that it 
should be pretty large, if the scope is a good voltage measuring-instrument. As a voltage 
source use a 100Hz sine wave, rather than a de voltage as above. 

1Meg h 
in ~to scope, c .2. 

L_ +o scope, ch. 1 

Figure L3.9: Circuit for measuring oscilloscope input impedance 

To measure the scope's input impedance drive it with a signal in series with 1 megohm 
(figure 3.9, above). What is the low frequency (f < 1kHz) attenuation? Now raise the 
frequency. What happens? Explain, in terms of a model of the scope input as an R in 
parallel with a C. What are the approximate values of R and C? What remedy will make 
this circuit work as a divide-by-two signal attenuator at all frequencies? Try it! 

Now go back and read the section entitled "Probes" in the Text's Appendix A. Then get 
a lOX probe, and use it to look at the calibrator signal (usually a 1 V, 1kHz square wave) 
available on the scope's front panel somewhere. Adjust the probe "compensation" screw to 
obtain a good square wave. Use lOX probes on your scope in all remaining lab exercises, 
like a professional! 

Finally, measure the internal resistance of the function generator. Don't try to do it with 
an ohmmeter! Instead, load the generator with a known resistor and watch the output drop. 
One value of Rload is enough to determine Rinternal• but try several to see if you get a 
consistent value. Use a small signal, say 1 volt pp at 1kHz. 
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Ch. 1 Review: Important Topics 
Important Topics 

1. Resistive Circuits: 

a. voltage dividers 

b. Rout• Zouv Rin• Zout; Thevenin models 

2. RC Circuits 

a. Generally 

i. time-domain vs frequency domain 

u. step-response vs sine response 

b. Important RC Circuits 

i. integrator, differentiator: (either can be described as a filter that is 
murdering signal) 

ii. filters 

1. f3dB 

2. phase-shift 

3. phasors (only an optional aid to visualizing what's going 
on) 

3. Diode Circuits 

a. rectifiers 

b. clamp 

c. zener voltage reference 

d. power-supply 

i. ripple 

ii. transformer rating: rms 

iii. current ratings: fuse, transformer 

4. LC Circuits 
Rare in this course: one LC resonant circuit (Lab 3) 
But they haunt us as unwanted effect of stray L and C: ringing in circuits; 
oscillation in a follower, e.g. (see 'unwanted oscillations' in Lab 10) 



choke 
droop 

primary 

ripple 

risetimt 
rms 

secondary 

stiff 

vpeak 

V peak-to-peak 
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Ch.l: Jargon and terms 

(noun): inductor 

fall of voltage as effect of loading (loading implies drawing of 
current) 

input winding of transformer 

variation of voltage resulting from partial discharge of power-supply 
filter capacitor between re-chargings by transformer 

time for waveform to rise from 10% of final value to 90% 

"root mean [of} square[s]". Used to describe power delivered by 
time-varying waveform. For sine, VRMS = V peruj.;;2 

output winding of transformer 

of a voltage source: means it "droops" little under load 

= "amplitude." E.g., in v(t) = Asinrot, "A" is peak voltage (see fig. 
1.17,p.16) 

VP_P: another way to characterize the size of a waveform; much less 
common than V peak· 
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CHAPTERS 2, 3 

Overview 

A novel and powerful new sort of circuit performance appears in this chapter: a circuit 
that can amplify. Sometimes the circuit will amplify voltage; that's what most people think 
of as an amplifier's job. Sometimes the circuit will amplify only current; in that event one 
can describe its amplification as a transformation of impedances. As you know from your 
work in Chapter 1, that is a valuable trick. 

The transistors introduced in this chapter are called bipolar (because the charge carrying 
mechanism uses carrier of both polarities-but that is a story for another course). In the 
chapter that follows you will meet the other sort of transistor, which is called field effect 
rather than 'unipolar' (though they were called 'unipolar' at first). The FET type,was 
developed later, but has turned out to be more important than bipolar in digital devices. You 
will see much of these FET logic circuits later in this course. In analog circuits, bipolar 
transistors still dominate, but even there FETs are gaining. 

An understanding of transistor circuits is important in this course not so much because 
you are likely to design with discrete transistors as because you will benefit from an 
understanding of the innards of the integrated circuits that you are certain to rely on. After 
toiling through this chapter, you will find that you can recognize in the schematic of an 
otherwise-mysterious IC a collection of familiar transistor circuits. This will be true of the 
operational amplifier that will become your standard analog building block. Recognizing 
familiar circuits, you will consequently recognize the op amp's shortcomings as 
shortcomings of those familiar transistor circuit elements. 

Chapter 2 is difficult. It requires that you get used to a new device and at the same time 
apply techniques you learned in Chapter 1: you will find yourself worrying about 
impedances once again: arranging things so that circuit-fragment A can drive circuit
fragment B without undue loading; you will design and build lots of RC circuits; often you 
will need a Thevenin model to help you determine an effective R. We hope, of course, that 
you will find this chance to apply new skills gratifying; but you are likely to find it taxing as 
well. 

Chapter 3, on FETs is difficult, too, and for similar reasons: you must apply skills 
recently acquired as you design with a new class of devices. Fortunately, some of what you 
learn in Chapter 2 applies by analogy to the FETs of Chapter 3: gain as transconductance, 
for example (gm: current out per voltage in) is a notion equally useful in the two chapters. 
Nevertheless, both chapters will make your work hard, and the varieties of FETs will annoy 
you for a while. 

We say this not to discourage you, but, on the contrary, to let you know that if you have 
trouble digesting Chapter 2, that's not a sign that there's something wrong with you. This is 
a rich chapter. 

In Chapter 4 suddenly your life as a circuit designer will become radically easier. 
Operational amplifiers, used with feedback, will make the design of very good circuits very 
easy. At that point you may wonder why you ever labored with those difficult discrete
transistor problems. But we won't reveal this to you now, because we don't want to sap 
your present enthusiasm for transistors. In return for your close attention to their demands, 
transistors will perform some pretty impressive work for you. 
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Instead of yearning for op amps, let's try to put ourselves into a state of mind 
approaching that of the transistor's three inventors, who found to their delight, two days 
before Christmas 1947, that they had constructed a tiny amplifier on a chunk of germanium. 
They could envision a time when there would be no more vacuum tubes; no more high
voltage supplies; no more power wasted in heating filaments. The world could look 
forward to the microcomputer, the Walkman-and then the boom-box: the amazingly tiny 
microcircuit housed in the amazingly huge suitcase. Ah, technology! 

Figure IN2,3.1: The first transistor: point-contact type (1947): Nobel prize-winning device, looking wonderfully home-made 
(it's not really made from paper clips, scotch tape and chewing gum). Photo used with permission of AT&T Bell Labs 
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Class 4: Transistors 1: First Model 
Topics: 

• Two simple views of transistor operation: 

Simple: Ic =In • ~ 
Simpler: Ic ""IE; VnE = 0.6V 

• Applying the models: standard circuits: 

Follower 

Current source 

common-emitter amp 

push-pull 

• Recapitulation: what the standard circuits look like 

Preliminary: Introductory Sketch 
An Intuitive Model: 

A transistor is a valve: 

smaU 
confrol 
StJna! 

(Ial 

Figure N4.1: A transistor is a valve (not a pump!) 

Notice, particularly, that the transistor is not a pump: it does not force current to flow; it 
permits it to flow, to a controllable degree, when the remainder of the circuit tries to force 
current through the device. 

Ground Rules: 
Text sec. 2.01 

Ground Rules: 
For NPN type: 

1. V c > VE (by at least a couple of tenths of a volt) 

2. "things are arranged" so that Vn- VE = about 0.6 v (VnE is a 
diode junction, and must be forward biased) 

We begin with two views of the transistor: one simple, the other very simple. (Next time 
we will complicate things.) 
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Text sec. 2.01 

Class 4: Transistors I: First Model 

Pretty simple: current amplifier: Ic = Beta • I8 

+ Ic = f3Ia 

I a + r .. = Ic ~I8 = (1•f>H8 

Figure N4.2: Transistor as current-controlled valve or amp lifter 

Very simple: say nothing of Beta (though assume it's at work); 

• Call V BE constant (at about 0.6 v); 

• call Ic = IE. 

A. The simple view: using Beta explicitly 
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You need the first view to understand how a follower changes impedances: small (change 
in-) current in-> large (change in-) current out: 

Text sec. 2.03 
Lab 4-2 

v_ 

l:. Vout = .6 Ve,.,,"fl:<r 

Lar3e .IH~: 

•.. nut very d,fferent .C.I's 

Figure 1'\4.3: How a follower changes impedances 
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And here is a corny mnemonic device to describe this impedance-changing effect. Imagine 
an ill-matched couple gazing at each other in a dimly-lit cocktail lounge-and gazing 
through a rose-colored lens that happens to be a follower. Each sees what he or she wants 
to see: 

\ 
\ 
I 
I 

' I u 
~ase- colo~d l#.,s 

Figure N4.4: Follower as rose-colored lens: it shows what one would like to see 

Complication: Biasing 
Text sec. 2.05 

We can use a single power supply, rather than two (both positive and negative) by 
pulling the transistor's quiescent voltages off-center-biasing it away from zero volts: 

-qj'-+"Z!>v 

Figure N4.5: Single-supply follower uses biasing 

The biasing divider must be stiff enough to hold the transistor where we want it (with 
V out around the midpoint between V cc and ground). It must not be too stiff: the signal 
source must be able to wiggle the transistor's base without much interference from the 
biasing divider. 

The biasing problem is the familiar one: Device A drives B; B drives C. As usual, we 
want Zout for each element to be low relative to Zin for the next: 

( ~ "5horf' -:t 
biDc~i_~ / SIJ»t<l ~uencies) 
capac~ "a· 

l 
Rovt"fA" "a" "c" 

Z,;, ~,;.. 
(bias) C+~aF1StS-ior) 

~'4 ru -. 
J VBIAS 

Figure N4.6: Biasing arrangement 

You will notice that the biasing divider reduce the circuit's input impedance by a factor of 
ten. That is regrettable; if you want to peek ahead to complications, see the "bootstrap" 
circuit (sec. 2.17) for a way around this degradation. 
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You will have to get used to a funny convention: you will hear us talk about impedances 
not only at points in a circuit, but also looking in a particular direction. 

Text sec. 2.05 

For example: we will talk about the impedance "at the base" in two ways: 

• 

• 

the impedance "looking into the base" (this is a characteristic of the transistor and 
its emitter load) 

the impedance at the base, looking back toward the input (this characteristic is not 
determined by the transistor; it depends on the biasing network, and (at signal 
frequencies) on the source impedance. 

the imf.€dance. "~k1n9 
v+ ln+o fhe base" (fhi~ 

is a c.haracferis6'c. of V+ 

X>
1 

(bi25) tloe f:ransisfor and if.s 
em;Her Load) 
,-~ 

Rz (bias) ~~edance at 
the base, k>ok in3 back 
fowal"ri iloe lnyut . . 
( tlois <-h~ rae 1-i! nsf: 1c. ts 

'!Jd; dderm/neti };J the 
irdnsisfr>r: 1t det,e"ds 
tJn the biqsi] r.efwar/<, 
and, at s19 n L .fi-e~~e..Oes, 
an ihe source ,;,.,,P!!d<~nce.) 

Figure N4.7: Impedances "looking" in specified directions 

B. The simplest view: forgetting Beta 

We can understand-and even design-many circuits without thinking explicitly about 
Beta. Try the simplest view: 

• Call V BE constant (at about 0.6 v); 

• call Ic = IE. 

This is enough to let one predict the performance of many important circuits. This view 
lets one see-

• That a follower follows: 
Text Sec. 2.03 

Uovt = lJ;: " 

(there's a 
v_ o.~ v de d;ff'ere»ee) 

Figure N4.8: Follower 
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• That a current source provides a constant output current: 
Text sec. 2.06 

• 
Text sec. 2.07 

+5.6V 
(applied.) 

once. V8 is fi·xed, 
VE fO<J is fi><ed., 
and de+er-m ines IE. 

Figure N4.9: Current source 

That a common-emitter amplifier shows voltage gain as advertised: 

{j)tJj.jle VI;.,: .. w8 

'V 

G> <'<ltjj fe.. D{ .1C. (ATe ) => 
cumte of VDut 

(lar:5e Rc 9 la':Je .6 Vou~) 

tNe,, wtsgle.. t>f V1·n, ..;> 
Wljjle of VE, 9 
W(_Jj le "*' IE, ~ Ic 

(sMaU R~: ~ l~':)e. ATe) 
Figure N4.10: Common-emitter amp 

• That a push-pull works, and also shows distortion: 
Text sec. 2.14, 

just "Siaf>lese" followers 

, •• but neifher tfv? 
?!Or CfJown O:.llducfs 
t~ntil ifs !VsEI;!: o.~ v. 
So, +1-tere's a dead. 
secf/on at "crossover-" 

Figure N4.11: Push-pull 

Recapitulation: the important transistor circuits at a glance 

N4-5 

To get you started on the process of getting used to what bipolar transistor circuits look 
like, and to the crucial differences that come from what terminal you treat as output, here is 
a family portrait, stripped of all detail: 
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out out 

out 

. -AAA~ 
1n ···~ In 

fi~<ed. 

.fix eel 

Cu!fReNT SouRcE' -fi'1Pll Filii{ SwtrcH 

Figure N4.12: The most important bipolar transistor circuits: sketch 

Next time, we will begin to use the more complicated Ebers-Moll model for the 
transistor. But the simplest model of the transistor, presented today, will remain important. 
We will always try to use the simplest view that explains circuit performance, and often the 
very simplest will suffice. 
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Ch. 2: Worked Example: Emitter Follower 

Text sec. 2.04 

The text works a similar problem in detail: sec. 2.04. The example below differs in 
describing an AC follower. That makes a difference, as you will see, but the problems are 
otherwise very similar. 

Solution 

Problem: A C -coupled follower 

Design a single-supply voltage follower that will allow this source to 
drive this load, without attenuating the signal more than 10%. 

Let V cc = 15 v, let Ic quiescent be 0.5 rnA. Put the 3dB point around 
100Hz. 

source r--- -·, 
' I : ---;--
: Rov~ 
: ld<::l 

I 
I rv: 

I I 

'---~--_) 

+6v 

I 

1 

load r------, 
• 1 F b'--' · ~ 

1
'.1'- .....;___s-- [a'Je 1ouc~ 

I : UJpacifor e$ 

; 1 sigr~~(s s1~: 
I 'f.7k : 
1 1 :f3<1B ""3oH2 
I I 
I - I \. ___ :.__../ 

Figure X4.1: Emitter Follower (your design) to let given source drive given load 

Before we begin, perhaps we should pause to recall why this circuit is useful. It does not 
amplify the signal voltage; in fact we concede in the design specification that we expect 
some attenuation; we want to limit that effect. But the circuit does something useful: before 
you met transistors, could you have let a lOk source drive a 4.7k load without having to 
settle for a good deal of attenuation? How much? 

The Text sets out a step-by-step design procedure for a follower, as we have noted 
already (sec. 2.04). We will follow that procedure, and will try to explain our choices as we 
go along, in scrupulous-perhaps painful-detail. 
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1. Draw a skeleton circuit 
Perhaps this is obvious; but start by drawing the circuit diagram without part values. 

Gradually we will fill those in. 

5 ource 

' 
I 7' I 
'--- ___ ) 

load 

:--1---i 
I I 
I I 

I I 
I I 
I I 

\. __ -:_) 
Figure X4.2: Emitter follower skeleton circuit: load is AC coupled 

2. Choose RE to center V out 

To say this a little more carefully, we should say, 

center Yout-quiescent• given Ic-quiescent 

"Quiescent" means what it sounds like: it means conditions prevailing with no input signal. 
In effect, therefore, quiescent conditions mean DC conditions, in an AC amplifier like the 
present design. 

aim for rn;droint-> VE = 7.5V 

"' R = ~ = 15'k ~ o.s-,.,A 

Figure X4.3: Choose RE to center V out 

3. Center V base 

Here we'll be a little lazier than the Text suggests: by centering the base voltage we will 
be sure to miss centering Your But we'll miss by only 0.6 v, and that error won't matter if 
V cc is big enough: the error is about 4% if we use a 15-volt supply, for example. 

Centering the base voltage makes the divider resistors equal; that, in turn, makes their 
RThevenin very easy to calculate. 
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4. Choose bias divider R's so as to make bias stiff enough 
Stiff enough means, by our rule of thumb,~ 1/10 Rm-at-base(DC)· If we follow that rule, we 

will hit the bias voltage we aimed for (to about 10%). 

f 

\ 

I 

I 

\ 

+15v 

Z70k 

\ 
+ISV 

= 

R,r,:: 

Figure X4.4: Set RrH bias « Rinbuo 

Rin-at-base is just ~ x RE, as usual. That's straightforward. What is not so obvious is that 
we should ignore the AC-coupled load. That load is invisible to the bias divider, because 
the divider sets up DC conditions (steady state, quiescent conditions), whereas only AC 
signals pass through the blocking capacitor to the load. 

That finishes the setting of DC conditions. Now we can finish by choosing the coupling 
capacitor (also called "blocking capacitor;" evidently both names fit: this cap couples one 
thing, blocks another). 

S. Choose blocking capacitor 
We choose C1 to form a high-pass filter that passes any frequency of interest. Here we 

have been told to put f3dB around 100Hz. 
The only difficulty appears when we try to decide what the relevant "R" is, in our high

pass filter: 
c, 

~1 R' = R,N !Dr circuit 

.,. = Rn, (bias) /1 Rn1 (af base) 

Figure X4.5: What R for blocking cap as high-pass? 
We need to look at the input impedance of the follower, seen from this point. The bias 
divider and transistor appear in parallel. 

Digression on Series versus Parallel 

Stare at the circuit till you can convince yourself of that last proposition. 
If you have trouble, think of yourself as a little charge carrier-an 
electron, if you like-and note each place where you have a choice of 
routes: there, the circuit offers parallel paths; where the routes are 
obligatory, they are in series. Don't make the mistake of concluding that 
the bias divider and transistor are in series because they appear to come 
one after the other as you travel from left to right. 

So, Zin, follower = RTH bias parallel (Rut at base). The slightly subtle point appears as you try to 
decide what (Rut at basJ ought to be. Certainly it is ~ x something. But x what? Is it just 
RE, which has been our usual answer? We did use REin choosing RTH for the bias divider. 
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But this time the answer is, 'No, it's not just RE,' because the signal, unlike the DC bias 
current, passes through the blocking capacitor that links the follower with its load. So we 
should put R1oad in parallel with RE, this time. 

The impedance that gets magnified by the factor ~' then, is not 15k but (15k parallel 
4.7k), about 15k/4 or 3.75k. Even when increased by the factor~, this impedance cannot be 
neglected for a 10% answer: 

Rin"" 135k parallel 375k 

That's a little less than 3/4 of 135k (since 375k is a bit short of 3 x 135k, so we can think of 
the two resistors as one of valueR, the other as 3 of those R's in parallel (using the Text's 
trick: see Ch. 1 p.6, "shortcut no. 2")). Result: we have 4 parallel resistors of 375k: roughly 
equivalent to lOOk. (By unnatural good luck, we have landed within 1% of the exact 
answer, this time.) 

So, choose C1 for f3dB of 100Hz. C1 = l/(21t 100Hz· lOOk) 
"" l/(6 · 102 

· 100 X 103 = (1/60) X IQ-6 "" 0.016j..LF. 
C1 = 0.02j..LF would be generous. 

Recapitulation 

Here, for people who hate to read through explanations in words, is one picture restating 
what we have just done: 

----..--+ISV ~ 
~ IQ=O.SmA 

Place V8 cg~ie~c~nt) 
around mit:lt;atnt (7.Sv), 
rou3h~ cen'ferinJ Vout CVE). 

This d~f~rrn,nes rat,o R1 : R2 ; 

h~re Rt = Rz 

Figure X4.6: Follower design: recapitulation 
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Reading: 

Problems: 

Lab 4: Transistors I 

Chapter 2.01-2.09 

Problems in text 
Additional Exercises 1,3. 
Bad Circuits A, B, D, E 

4-1 Transistor Junctions are Diodes 
Here is a method for spot-checking a suspected bad transistor: the transistor must look 

like a pair of diodes when you test each junction separately. But, caution: do not take this 
as a description of the transistor's mechanism when it is operating: it does not behave like 
two back-to-back diodes when operating (the following circuit, made with a pair of diodes, 
would be a flop, indeed:) 

8 c 
E 

"T0-92" 
CASE E"MITT~ 

Figure L4.1: Transistor junctions: (for testing, not to describe transistor operation) 

Get a 2N3904 NPN transistor, identify its leads, and verify that it looks like the object 
shown in figure 2.2 of the text (and reproduced just above), by measuring the voltage across 
the BC and BE junctions, using a DVM's diode test function. (Most meters use a diode 
symbol to indicate this function.) The diode test applies a small current (a few milliamps: 
current flowing from Red to Black lead), and the meter reads the junction voltage. You can 
even distinguish BC from BE junction this way: the BC junction is the larger of the two; the 
lower current density is revealed by a slightly lower voltage drop. 
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4-2 Emitter Follower 
Wire up an NPN transistor as an emitter follower, as shown below. 
Drive the follower with a sine wave that is symmetrical about zero volts (be sure the de 

"offset" of the function generator is set to zero), and look with a scope at the poor replica 
that comes out. Explain exactly why this happens. 

If you tum up the waveform amplitude you will begin to see bumps below ground. How 
do you explain these? (Hint: see V BE breakdown specification in the data sheet for the 
2N4400 transistor, Text Appendix K: the '4400 is very similar to the '3904, and in this 
characteristic is identical.) 

+15 vol+s (=Vee:) 

in 

Figure L4.2: Emitter follower. The small base resistor is often necessary to prevent oscillation 

Now try connecting the emitter return (the point marked VEE) to -15V instead of 
ground, and look at the output. Explain the improvement. 

4-3 Input and Output Impedance of Follower 

Measure Zin and Zout for the follower below: 
+ 15" volts 

4.7.f-'F 
out ----i~+ ___ l 

II I 

-15 Volts 

I 

::~ 1k 
<). 

I 
I 

-~-

Figure L4.3: Follower: circuit for measuring Zin and Zout 

In the last circuit replace the small base resistor with a lOk resistor, in order to simulate a 
signal source of moderately high impedance, i.e., low current capability (see figure above). 

a) Measure Zout• the output impedance of the follower, by connecting a lk load to the 
output and observing the drop in output signal amplitude; for this use a small input signal, 
less than a volt. Use a blocking capacitor - why? (Hint: in this case you could get away 
with omitting the blocking cap, but often you could not). 
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Suggestions for measurement of ~ut 

• If you view the emitter follower's output as a signal source in 
series with Zout . , then the lk load forms a divider at signal 

Thevenm 

frequencies, where the impedance of the blocking capacitor is 
negligibly small. 

• The attenuations are likely to be small. To measure them we 
suggest you take advantage of the percent markings on the scope 
screen. 

Here is one way to do this measurement: 

center the waveform on the 0% mark; 

AC couple the signal to the scope, to ensure centering; 

adjust amplitude to make the peak just hit 100%; 

now load the circuit and read the amplitude in percent. 

L4-3 

b) Remove the lk load. Now measure Zin• which here is the impedance looking into the 
transistor's base, by looking alternately at both sides of the lOk input resistor. For this 
measurement the 3.3k emitter resistor is also the "load". Again, use a small signal. Does 
the result make sense? (See Text sec. 2.03, subsection on impedances.) 

When you have measured Zin and Zoul' infer your transistor's p. 

4-4 Single-Supply Follower 
+15' volts 

2N3904 

?.5k 

Figure L4.4: Single supply follower. A 270 ohm resistor in series with the base may be necessary if the circuit exhibits 
oscillations. (This puzzling trick you will find explained in Lab 11, on oscillators.) 

The figure above shows a properly-biased emitter follower circuit, operating from a 
single positive supply voltage. This circuit comes from the example in Text sec. 2.05. Wire 
it up, and check it for the capability of generating large output swings before the onset of 
"clipping". For largest dynamic range, amplifier circuits should exhibit symmetrical 
clipping. 

A fine point: in fact, the clipping here may look slightly odd: a bit asymmetric. To see 
why, watch the base with one channel of the scope (not the same DC level as at the function 
generator, n.b.). What happens when the voltage at the base tries to climb above the 
positive supply? 
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4-5 Transistor Current Gain 
You saw the transistor's current gain,~. at work in 4-3. Now measure~ (or hFE) directly 

at several values of Ic with the circuit shown below. The 4.7k and lk resistors limit the 
currents. Which currents do they limit, and to what values? 

Try various values for R, using a resistor "substitution box:" e.g., 4.7 M, 1 M, 470K, 
lOOk, 47k. Estimate the base current in each case (don't bother to measure it; assume VnE = 

0.6V), and from the measuredlc calculate J3 (hFE). 

+15 vol+s 

11<. 

R 4.7k 

Figure L4.5: Circuit for measurement of~ or "hFE" 

4-6 Current Source 

Figure L4.6: Transistor current source 

Construct the current source shown above (sometimes called, more exactly, a current 
"sink"). 

Slowly vary the lOk variable load, and look for changes in current measured by the YOM. 
What happens at maximum resistance? Can you explain, in terms of voltage compliance of 
the current source? 

Even within the compliance range, there are detectable variations in output current as 
the load is varied. What causes these variations? Can you verify your explanation, by 
making appropriate measurements? (Hint: Two important assumptions were made in the 
initial explanation of the current source circuit in the Text's fig. 2.21, sec. 2.06.) 
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4-7 Common-emitter Amplifier 

+15" volfs 

Figure L4.7: Common-emitter amplifier 

Wire up the common emitter amplifier shown above. What should its voltage gain be? 
Check it out. Is the signal's phase inverted? 

Is the collector quiescent operating point right (that is, its resting voltage)? How about 
the amplifier's low frequency 3dB point? What should the output impedance be? Check it 
by connecting a resistive load, with blocking capacitor. (The blocking cap, again, lets you 
test impedance at signal frequencies without messing up the biasing scheme.) 

4-8 Emitter Follower Buffer (omit this exercise if you are short of time) 
Hook an NPN emitter follower to the previous amplifier. Think carefully about 

coupling and bias. Use a lk emitter resistor. 

Figure L4.8: Follower buffering amplifier (details left to you) 

Measure output impedance again, using a small signal. Is the overall amplifier gain 
affected by the addition of the emitter follower? 



L4-6 Lab 4: Transistors I 99 

4-9 Transistor Switch 
The circuit below differs from all the circuits you have built so far: the transistor, when 

on is saturated. In this regime you should not expect to see Ic = ~ • In. Why not? The 
2N4400 is a small power transistor, housed in the T092 package, like the 2N3904, which 
you have been using in this lab. The 2N4400 can dissipate more power than the '3904, and 
when on shows lower V CE(sat) (see below). 

+S volts 

#47 larnp 
(0.15A 1 b."3V) 

Figure L4.9: Transistor switch 

Turn the base current on and off by pulling one end of the resistor out of the breadboard. 
What is In, roughly? What is the minimum required~? 

Saturation or "On" voltage: VcE(sat) 

Measure the saturation voltage, V CE(sat)• with DVM or scope. Then parallel the base 
resistor with 150 ohms, and note the improved V CE(sat)· Compare your results with the 
results promised by the data set out below. (See Appendix G in the text for more on 
saturation.) 

1.0 

0.?. 

o~--~~~~~U---~~~~~~----~~~~~~---L~~~ 

io)"A 100)'A i"'A 1o.,A 

:&.se current, Is 
Figure L4.10: 2N4400 Saturation voltage versus /8 and Ic 

Why should the designer of a switching circuit be concerned with the small decrease in 
V CE(sat) that results from generous base drive? 
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Topics: 

• old: 

• new: 

Class 5: Transistors II: 
Corrections to the first model: 

Ebers-Moll: re; applying this new view 

Our first transistor model: 

+ Simple: Ic =~xis 
+ Simpler: Ic ""/E; V BE= 0.6V 

transistor is controlled by VsE: Ebers-Moll view 
applications: circuits that baffle our earlier view: 

+ current mirror 
+ common-emitter amp with no RE 
+ Rout of follower driven by Rsaurce of moderate value 

complications: 

+ temperature effects 
+ Early Effect 

Our first view of transistors held that two truths were pretty much sufficient to describe 
what was going on-

1. V BE= 0.6, 
and 

2. /E ""Ic =~xIs 

This account can take us a long way; VBE = constant = 0.6V is often a good enough 
approximation to allow understanding a schematic or, say, designing a not-bad current 
source. 

Sometimes, however, we cannot settle for this first view. Some circuits require that we 
recognize that in fact VBE varies with I c. In fact, the relation looks just like the diode curve 
already familiar to you (it differs only in slope): 
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Figure NS.l: V8E does vary with lc, after all. In fact, Ic vs. V8E looks a lot like a diode's curve 

You knew, anyway, that the transistor had limited gain, so you would guess that a circuit 
like the one just below has a gain limited by the properties of the transistor-the Ic vs VBE 

curve shown above. 
+Vee 

G = - R, 
? 

Figure N5.2: Infinite-gain amplifier? 

A naive application of the rule G = - Rc!RE would imply infinite gain; but you know better. 
Wiggling the input= wiggling VBE• and that produces a limited variation of lc, which in 
turn produces a limited variation in vout· 

"Intrinsic emitter resistance:" re 

You can describe this effect handily by drawing it as a little resistor in series with the 
emitter (for a derivation of re, see end of these notes): 

Text sec. 2.10 
"Rule of Thumb No. 2" 

Figure N5.3: "Little re''-the intrinsic emitter resistance 

This "resistance" we call "little re;" please note that it is not a resistor planted in the 
transistor; it only models the limited gain of the device. 

Another way to say this is to say that re is the slope of the gain curve-but with the curve 
plotted on its side, with VBE vertical Uust so it will have the conventional units of 
resistance): 
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SO.Q 2'5.!1 
' 

1/s£ O.'ir>A 1n>A 2rnA 

Ic 
Figure N5.4: r. is slope of transistor gain curve, if you turn the plot on its side 

Evidently the value of re varies with I c. Specifically, here's our rule of thumb: 

re= 25 ohms/(Ic (in rnA)) 

N5-3 

Watch out for the denominator: you must write "1 rnA" as 1, not 1•10-3• If you forget this, 
your answers will be off by even more than what we tolerate in this course! 

re, "littler e," expresses the Ebers-Moll equation in a convenient form, and you will use 
this simplifying model more often than you will use the equation. 

But we should notice what the Ebers-Moll equation says, before we go on: 
Text sec. 2.10 

Ebers-Moll 
Ic =Is( e VmJ(kT/q)- 1) 

r-----~~ ~ 
(treat 15 as a constant, for any (negligible) 

particular transistor, except that 
Is grows fast with temperature; 
more on this later) 

Ignoring the "-1" term, we can say simply thatic grows exponentially with VBE· 

In addition, we might as well plug in the room-temperature value for that complicated 
expression "kT/q:" 25 mV. Then Ebers-Moll doesn't look so bad: 

Ebers-Moll.· (slightly simplified) 
Ic •Is eVsef25mV 

This equation is most often useful to reveal the relative values of Ic as VBE changes. What 
happens, for example, if you increase VBE by 18m V? Let's call the old Ic "Ic ," the new 

I 

one "ICz: 

But that is just 
e(18mV(25mV).,. 2 

This is a number perhaps worth remembering: 18m V ~ VBE for a doubling of I6 also 
sometimes handy: 60m V ~ V8 E per decade (that is, lOX) change in I c. 
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Applying the Ebers-Moll view to circuits 

Here, for example, is a circuit that makes no sense without the help of this view of 
transistors: 

Text sec. 2.14 
Lab 5-3 

* current mirror 

Ic(froJram), 
deit?rrn,ned by 
Ohm's Law, evokes 
affroriafe 11lE1 

P"'A-=--~ 
v8Ez' applied bJ cQ1, 

evokes anrori<tfe Ic(ovf.) 

Figure NS.S: Current mirror: Ebers-Moll view required 

Why is a mirror Useful? It makes it easy to link currents in a circuit, matching one to 
another. It also shows very wide output compliance. But for our present purposes it is most 
useful as a device to demonstrate the power of the Ebers-Moll view. 

It's easy to make Ic-program = Ic-out• and only a little harder to scale Ic-out relative to 
lc-program· 

You will find in Lab 5 that the mirror departs rather far from this ideal model. Early 
effect and temperature effects both disturb it. We will learn later how to fight these 
problems; for now, let's leave the mirror in its simplest form, as shown above. 

Other consequences of this amended view of transistor operation: 
It brings some circuits down to earth: 

*a ceiling on gain (a recapitulation): no infinite-gain amps 
Text sec. 2.12 

* a floor under Z014 

Text sec. 2.11 

/"V"'.

Vzl\. 

""'-./"" 

(bias not 
shok!n) 

Vo:_ = +10v 

,j\.; ·- +Sv 

Figure N5.6: What gain? Not infinite 

Vee_= +IS"v 

(bids bot shawn) Rovt: :: REI I ( ~o.n.. + re) 
FE 

::::: 25".1l. (1£> dom1nafes) 

Figure N5.7: WhatR""'? Not 0.5 ohms 
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Let's look closely at the problem of the grounded-emitter amplifier. You knew, anyway, 
that its gain was not infinite. Now, with the help of re, we can evaluate the gain. 

+Vee = 10v 

Figure N5.8: Grounded emitter amp again 
We can use our familiar rule to evaluate gain here, simply drawing in re (at least in our 
heads). To evaluate re we need a value of lc. There is no single right answer; the best we 
can do is specify I c at the quiescent point-where Vout is centered. 

Roughly, then, 
G = - 5.lk.Q/25Q ~ -200 

That's high. But evidently the gain is not constant, since lc must vary as vout moves 
(indeed, it is variation in lc that causes vout to move.) 

Here's the funny "bam-roof' distortion you see (this name is not standard, incidentally) if 
you feed this circuit a small triangle: 

Text sec. 2.12; 
compare fig. 2.36; 
Lab 5-2 Vout 

7.5v o.SmA 

Sv 1mA 

50Q 100 

25.Q 200 

12.sn 900 

7.5 

5 

~ 
0 

time 

Figure N5.9: Gain of grounded-emitter amp varies during output swing (call it "bam-roof' distortion): Gain evaluated at 3 
points in output swing 

The plots below show how gain varies (continuously) during the output swing: 

0 ,._ __ t,..,.im-e ---

ovt 

I 

so ' 
q : 
~25 I 

Figure N5.10: During swing of Vout•lc and thus r0 and gain vary 

This is bad distortion: -50% to + 100%! What is to be done? 

4oo 

c 
Zoo ·~ 

\.!) 
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Remedy: emitter resistor 
One cannot eliminate this variation in re (-can one?), but one can make its effects 

negligible. Just add a constant resistance much larger than the varying re. That will hold 
the denominator of the gain equation nearly constant. 

Text sec. 2.12 

With emitter resistor added, gain variation shrinks sharply: 

1\.r 

(bias not 
shown) 

+lov 

G= Rr;. t re 

varies f.-or>"> 

- S:.tk = - 9.1oj 
"'

0 
-3.5±4% 

-lo - S:ik = -9.75 
5""2.:3 

Figure NS.ll: Emitter resistor cuts gain, but also cuts gain variation 

re still varies as widely as before; but its variation is buried by the big constant in the 
denominator. 
Circuit gain now varies only from a low of -9.1 to a high of -9.75: a -4%, +3% variation 
about the midpoint gain of 9.5. 

Punchline: emitter resistor greatly reduces error (variation in gain, and consequent 
distortion). This we get at the price of giving up some gain. (This is one of many instances 
of Electronic Justice: here, those greedy for gain will be punished: their output waveforms 
will be rendered grotesque.) 

We will see shortly that the emitter resistor helps solve other problems as well: the 
problem of temperature instability, and even distortion caused by Early effect. How can a 
humble resistor do so much? It can because in the latter two cases the resistor is applying 
negative feedback, a design remedy of almost magical power. Later in these notes, we will 
look more closely at how the emitter resistor does its job. And in Chapter 4 we will see 
negative feedback blossom from marginal remedy to central technique. Negative feedback 
is lovely to watch. Many such treats lie ahead. 

If you are in the mood to find negative feedback at work in today's lab, you can find it in 
the simple-looking circuit fragment: the program side of the current mirror: 

+15 

Figure NS.12: Subtle negative feedback: programming side of the current mirror 

See if you can explain to yourself how this circuit works. Hint: nearly all of the current 
flows not in the base path, but from collector to emitter. 
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Complications: Temperature effects; Early Effect 

Temperature Effects 
Semiconductor junctions respond so vigorously to temperature changes that they often 

are used as temperature sensors. If you hold VBE fixed, for example, you can watch fc , 
which varies exponentially with temperature. 

But in any circuit not designed to measure temperature, the response of a transistor to 
temperature is a nuisance. Most of the time, the simple trick of adding an emitter resistor 
will let you forget about temperature effects. We will see below how this remedy works. 

I 

if holter / 

"' I 
I 

I 
I 

I 

I ' 
I ' I // 

I / 
/ _ _.... .... "' 

/;cd; 25"C 

I 

I 
I 

~if c""fer 
I 

l11E 
Figure NS.13: Transconductance of bipolar transistor varies rapidly with temperature 

Preliminary warning. Do not look for a description of this dependence in the Ebers-Moll 
equation. That equation (mis-read) will point you in exactly the wrong direction: increasing 
T should shrink the exponent: 

fc = ls(eYsrJ(kT/q) -1) 

Don't be fooled: Ebers-Moll equation seems to say Ic falls with temperature. Not so. 
But, to the contrary, increasing T increases fc, and fast. Solution to the riddle: Is grows very 
fast with temperature, overwhelming the effect of the shrinking exponent. 

Here are two formulations for the way a transistor responds to temperature: 
Text sec. 2.10 

Temperature Effects: two equivalent formulations 

I c grows at about 9%fDC, if you hold V BE constant. 

V BE falls at 2m V ;oc, if you hold I c constant (This is the text's 
formulation.) 

The first formulation is the easier to grasp intuitively: heat the device and it gets more 
vigorous, passes more current. The second formulation often makes your calculation 
easier. If you use the second formulation, just make sure that you don't get the feeling that 
the way to calm your circuits is to build small fires under them! 

Example: current mirror 
The current mirror misbehaves if the temperatures of the two transistors become unequal. 

This you will see in the lab. If you heat one of the two transistors, the current out rises; if 
you heat the other, the current out falls. Thinking through why this happens will help you 
get used to the two formulations of temperature effects, because this is the rare circuit that 
invites one to use both formulations, since it illustrates both cases: fc fixed, and VsE fixed. 
Let's try it. 
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I 
I I I 

/ <.ool 1;: hrrl: ,' 'coo( Ic hot I 
I 

(Tov+:) 
J.,.,A, I 

1: I I 
1: I I I 
I; 

I I I 
I 

<1m A I 
I / 

lt.1 
I 

Qz I :., . / 
I 

;.- I ;/ _.., 
I -': I / -:- /' ./ -- -:- -

t li-E t Va. 
( <'?1's VBE ~ Q;s VaE) 

~ 

hot Q1 ~low~" ~low Iout if Q2. not hot 

Figure N5.14: Current mirror again: consequence of temperature differences between Q1 and Q2 

In Q1, current is held essentially constant by the large voltage across the 15k resistor. So, if 
we heat Q1 what happens? The second formulation says VBE falls. In effect, the curve 
shifts as shown above: at 1 rnA, Q1 now finds a smaller V BE suffices. 

Meanwhile, Q2 feels someone reducing its VBE· We assume Q2 's temperature is 
unchanged. So what does Q2 do? It delivers the lower lc that its curve says is appropriate 
to the lower VBE· 

You can easily talk your way through a similar argument to explain why heating ~ while 
leaving Q1 at room temperature causes /out to increase. 

Remedies: making circuits stable despite temperature changes 

1. Compensation 
The mirror becomes wonderfully immune to temperature variation if the two transistors 

stay at the same temperature. One can arrange that by building them on one piece of 
silicon. The argument that this works is simple: both transistors 'look at the same curve,' if 
they are heated together. We don't care what those curves look like, only that they match. 

Text sec. 2.14 
Lab 5-3 

I 
I 

Ic hot' /cool. 
I (IP'3,.,) ~~ 

1MA+------.--~-r 
1: 
,: I 

I: 
I : 

: I 

II ;,/ 

/ _..,..,""' ' 

t 

I 
/ 

/ 

I 

Qj_ 

Vs£ 

Ic 
(Iovt) 

1,.,,1, 

I 
/ 

/ 

I 
I I 

hot I I CL>o( 
I I 

I 
I 

1: I 

J: I 
I I 

I 
I ./ 

I ./ 

Qz. :I 
.;, 

/ 
/ : 

t 1.&-

Figure N5.15: Example of temperature compensation: Current mirror is indifferent to temperature, 
if transistor temperatures track 
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Here is another example, from the text. This circuit compensates for changes in one direction 
by planting a circuit element that tends to change at the same rate in the opposite direction. 

Text sec. 2.12 
--.--------.- +2ov 

ovt 

ra'•sin3 temp / _ C 
lowers Q1 's V8c- · o'J>~.al -1 \:. 

lh ~ 
.••. and that furns ckwn ''u~lue'~ Q2 

Figure N5.16: A second example of temperature compensation 

This circuit (from Text's fig. 2.39) lets the fall of Q1 's VBE squeeze down Q2 as both get hotter. 
(The lOk resistor on the base of Q2 makes the biasing circuit not too stiff: the signal source 
(presumed to be of impedance« lOk) can have its way, as usual.) 

2. Feedback: emitter resistor 

The remedy described here is simpler, and more widely used. It is also subtler. 
Text sec. 2.12 

•1Sv +15v 

sneaky n~a+iu~ 
f'~bac.k f · · · circvit reac.hLS back 

to adjust valve ! 
Figure N5.17: An unstable circuit stabilized by emitter resistor 

The left-hand circuit is so unstable that it is useless. An 8°C rise in temperature saturates the 
transistor. 

Text sec. 2.12, ex. 2.9 

Why does is the right-hand circuit work better? How does the emitter resistor help, as Ic 
grows? Here is feedback at work: the circuit senses trouble as it begins: 

Ic begins to grow in response to increased temperature; 
VE rises, as a result of increased Ic (this is just Ohm's Law at work); 

But this rise of VE diminishes VBE• since VB is fixed. Squeezing VBE tends to close the 
transistor "valve." Thus the circuit slows itself down. 

The remedy is not quite perfect: some growth of Ic with temperature is necessary in order to 
generate the error signal. But the emitter resistor prevents wide movement of the quiescent 
point. 
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2a. Temperature stability and high gain 
Text sec. 2.13; 
Lab 5-2 
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If you want stability and high gain, you can have that combination, by including RE for DC 
biasing, but making it disappear at AC. You make it "disappear" by bypassing or paralleling RE 
with a capacitor, thus: 

-+15v 

G 

Figure N5.18: Bypassed-emitter resistor: high gain plus temperature stability 

This circuit still distorts; note that RE here remedies only the temperature instability problem. 

Here is feedback in a more obvious form, but used to similar effect: this is from Lab 5: 
Text sec. 2.12 
Lab 5-5 

+15v 

Figure N5.19: DC feedback protects against temperature effects 

This looks a lot like operational amplifier circuits that you will see in Chapter 4 (called "Chapter 
3" in '81 edition). When you get there you may want to look back at this circuit. Then you will 
appreciate what now is obscure: the feedback affects DC levels, but not circuit gain-not what 
happens to the signal, in other words. It does not affect the signal because the low output 
impedance of the function generator overwhelms the relatively feeble feedback signal (that is, 
high-impedance feedback). It is meant to work that way, to keep things simple for us at this 
stage. 
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Early Effect 
Here is a picture of this effect, which just describes the transistor's departure from the ideal 

view that it is a current source: 

Earl~ E[(~?rt ~ 

Ic r's determined, rt\ 
sa!j both of our ~ 
frdnsistor models 
{determined 6J Igor DJ l/a£} ... ___ cmrc~ 1' 

\\:eo ~ 13 '3 R. 
-J, model> 

- - • E &r!1 efr.d 

~ 

chut licE doe_s 
m a tier a !t'tt!~, says Earlj: 
Ic grows wlfh Vu, 
as if c-e were a Vetfj 

large resutdnce. 

1 

0 

Vee= M7v .l 
tUc. tor .t.lte = 2ov, 

- - - - - - - - - - - "f at f,xed VBE 

10 20 

Figure N5.20: Early Effect: graphically, the curve's departure from horizontal 

A transistor is a pretty good current source, but it also acts a little like a resistor: Ic grows as the 
voltage across the device (V CE ) grows. 

Like the temperature-dependence in the Text's formulation, Early Effect looks like an effect 
on Vbe, because Ic is assumed fixed: 

Text sec. 2.11 

Early Effect: 

where a"" 0.0001 (or w-4) 

(/cis assumed constant.) 

Despite the assumption used in this formulation, that Ic is fixed, usually you will see Early 
Effect causing variation in lc. while V8E is fixed. The current mirror provides a good example 
of the problem, and of ways to beat it. 

Figure N5.21: Current mirror: Early Effect predicts /out will not match /program 

The flaw in the simple mirror is the likely difference between the voltages across the two 
transistors: to the extent that the VeE's differ, Early says the currents will differ. 

Quantitatively: try an example: the mirror, powered from + 15v. What happens if R1oad is 
small, so that most of the 15-volt supply appears across V CE of Q2? Early Effect predicts /out a 
good deal larger than /program· 
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How much larger? The quantitative argument is a bit convoluted, as it can be for temperature 
effects. The difficulty is the assumption that Ie remains constant, while we know that in this 
case the result is just the contrary: /out is going to vary as VeE varies. You need to do a sort of 
thought-experiment contrary to fact: assume V8E on Q2 does change, then later recognize that it 
can't; see what change in Ie must have occurred to have held V8 E constant. 

Here's the argument. 

Assume Ie constant; 

The extreme difference between the VeE's on Q1 and Q2 would be about 15 volts (this 
would occur for R1oad close to zero Q). In that case the mismatch of VnE's predicted by 
Early Effect would be about 1.5 m V. 

Now we are ready to admit this is not possible: the two V8 E's are equal. One can see 
that with a glance at the circuit diagram. 

Admitting this is not possible, we ask what difference in Ie's must occur instead. 
Ebers-Moll gives the answer: 

Ie = ls(eVs&'(kTiq)- 1) 

The ratio of the higher to lower currents is 

And this is the same as 

In this case that is about 

e(VBE-2 I 25 m V) I e(VBE-1 I 25 m V) 

el.5 mY 125mV 

.. eo.06 

-1.06 

This is smaller than the mismatch we saw when we tried this experiment: we saw a ratio of 
about 1.15. Probably our estimate of 0.0001 (or 10-4)for the Early Effect a is low (our 
experiments suggests a ... 0.0002 to 0.0003 (or 2 to 3•10-4).). 

But the central point is sound: Early Effect introduces a disappointing error into the 
otherwise-admirable mirror. We need a remedy. 

Here are two: 

1. clamp VeE for Q2, so that the VeE difference does not occur. 

Text sec. 2.13 
Lab 5-3 

This the clever Wilson Mirror does. 

...._ 

Q
3 

la~e /:NeE -
bvt harr>~less 

""' 

Figure N5.22: Beating early effect: one way: wilson mirror clamps VeE 
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2. Or Add an emitter resistor that tends to fight the growth of Q2's Ic. (This works 
against temperature instability, too, incidentally-in case Qz gets hotter than Q1, as it 
tends to in the simple mirror above). 

Re 
loo.!l 

Figure N5.23: Beating Early effect: another way: emitter resistor senses and corrects errors 

Using Early Effect to estimate R0u~for a current source 

Usually we settle for calling Rout for a transistor current source just "very high." Early Effect 
lets us calculate it roughly: 

Consider a familiar current source: assume the base is driven by a stiff voltage source: 

Figure N5.24: Familiar current source: what is its output impedance? 

Apply a ~V. as usual; ask what M results. 

The ~Vappears as a ~VeE· Let's suppose we apply a ~Vofplus one volt. 

Early effect predicts a consequent ~VBE of minus 0.1 mV-if Ic stays constant. We 
will assume, for the moment, that Ic does stay constant. 

If V BE shrinks, while VB is fixed, then V E must rise by 0.1 m V. 

That rise of V E increases I c by 0.1 J..l.A. 

So, the output impedance of the current source, defined as 
~VIM, is lv I 0.1J..l.A or lOMQ. 

This argument is about right. It does contradict itself in first assuming Ic unchanged, so we 
should expect it to go wrong when it predicts a large change in I c. 
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Deriving the expression for re 
Text sec. 3.07 
(FET chapter) 

Postscript: Deriving r e 

113 

As the Text explains in Chapter 3 (sec. 3.07) it's not hard to confirm the expression for the 
value of re. The transistor's gain is dlcldVnE· But if we write Ebers-Moll the way we did 
above, as 

then 
d (/c) I d(VniJ = (1125 mV) (/s eVsJfl5mV), 

or, more simply, 
(11 25mV) (/c). 

Andre, the reciprocal of gain, is 
25mV I leA. 

which we prefer to write as 
25Q I lc (in rnA). 

Alternative 'derivation:' Tess o' Bipolarvil/e 

Here is an alternative argument to the same result: imagine a lovely milkmaid seated (in the 
summer twilight) on a stool, tugging dreamily at the emitter of a transistor whose base is fixed. 
She has pulled gently, until about 1 rnA flows. What delta-current falls into her milkpail, for an 
additional tug? 

Figure N5.25: Dreamy milkmaid discovers the value of r., experimentally 

If the base is anchored, tugs on the emitter change VnE a little; in response, Ic changes quite a 
lot. The squirts of ME (which we treat as equivalent to Me) reveal a relation between ~VBE 
and M c· The quotient 

~VnEI Me 
is re, which behaves just like a resistor whose far end is fixed. 

"Yes," muses the charming milkmaid, her milkpail now filled (with charge, in fact; but she 
hasn't noticed). "Just as I thought: re, though only a model, does behave for all the world like a 
little resistor. So that's why we draw it that way." And with that she rises, little suspecting 
what her discovery portends, and carries her milkpail off into the gathering dusk. 
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Reconciling the two views: Ic = P x /Band Ic """Is eVurJVT 

In case you're troubled by the thought that our two views may not be consistent, here's a 
picture to reassure you: 

Is~~----.. 
I ' 
l l 

l ' 

L_-- ; ~
~Ic 

r ~ 

I I 
l I 
I I 
I I 
l_ -

f+hct Vse- evokes 
1 art Ic cc exf(V8 E) 

(Ebers-11~11) 

"log ,..,achJnf-" "exp machine" 

~ Ic rx exp(k, loye~) "" f2 I 8 

Figure N5.26: Beta ... and Ebers-Moll descriptions of transistor gain reconciled 

This picture is wrong to the extent that p is not constant: the left-hand block-the 'log 
machine'-is not a very good machine; the right-hand block-the Ebers-Moll exponentiating 
machine-is good. If this diagram does not make you feel better, forget it; you don't need to 
reconcile the two views if you don't want to. 
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Preliminary: A Design Procedure 

Figure XS.l: Skeleton Circuit 

Setting DC conditions 

1. Choose Rc to center Vout• given Ic (quiescent) 

2. Choose RE to put VE somewhere around 1 volt, for temperature 
stability 

3. Let RTh for the bias divider be about 1/10 (Rin transistor, which is 
f3 • RE ). As for the follower recently designed, the AC path to 
ground is to be ignored: the path through R3 is closed to DC, so 
invisible to the bias divider. 

4. Choose R1, R2 to put Vbase at (VE + 0.6V). RTh is roughly R1, 

since the divider is so far unbalanced. 

Determining AC performance: Gain (what happens to signal) 

1. Choose R3 (if any) for gain at quiescent point 

2. Choose C2 for f3dB: the relevant "R" is R3 + re 

3. Choose C1 as usual; relevant "R" is circuit's Zin , as usual: the 
circuit's AC input impedance, as for the follower: we look 
through capacitor C2, and see R3 as a path to ground. 

In choosing C1 we need to be generous, since two high-pass 
filters are at work: those using C 1 and C2• So, if we made the 
mistake of putting the f3dB for each filter precisely at our target 
f3dB for the circuit, we would be disappointed: we would find the 
circuit's response down 6dB. 
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Bypassed-Emitter Amplifier 

Solution 

Problem: common emitter amp 
Design a common-emitter amp to the following specs: 

• V+=20V 
• f3dB = 100Hz (approx.) 
• gain= -100 at quiescent point. 
• f_c quiescent = 0.5 rnA 

Questions: 

• What is the amp's gain-

when the output swings to about+ 15v? 
when the output swings to about + 5v? 

• What is the amp's Zout? 

X5-2 

This time we will set out the solution simply by drawing a circuit with explanatory 
'balloons.' 

7. Choo~e CJ. . 
Nate -fJ.,;rt at St~na1 t'~ 
£rn"' ~1hcblas)HiiFI:(re•~l 

::: 2ol:.llloo• 2oo 
~ iol: 

~ c, ~ 1/<u. 5'o ·lok 
:::o;?.¥ 

4. Find 1?1: Rz ra+io 
to rut 113 "' 1., v: 
u.v _ Rz _, o _ o -;;;- - ,. , ...,.. ".1-u.s"z 
la,,v '<1 

----tnen-·· 
Set Rn,cbias) « Rin(tilSe): 
R1'n(b&Se) :::: hf'E RE: ,.zook 
So Rn,cb<<s)" .2.ok. 
Let R2 "2ok, since. 
«t >> Rz ~ Rlh(bi.as) <t Rz 

5. ~oc5e. .e3 h:>r- reg 'd 
3a.<n . r; = --"'R.~c. ::---;;c::

re+CREIIR3)' 
and te = s-o.a. Gil Ic. = o.s .. A. 
ihu.o; 2ok 

too= 50_a+R
3 

r 
ancl R3 ~ ISOn. (no+e 
effect of l!:r; ne3lrjible.) 

6. Choose Cz. 
Circuit t3<1s = ioofk ~ 
-fl..,js "tilffr's" t3<18 ~5oH'i!. 
Re\~4nt "R." is R3 +re ~ 
C2 = 1fzlf't~9(R'3 + re) •1(,)' f. 
use 20_.....1= (o• Z'ZJ'f) 

Figure X5.2: Common emitter amplifier: solution to stated problem 
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Questions: 

What is the amp's gain-
a) -when the output swings to about+ 15v? 

Here I c must be at half of its quiescent value (since the drop across Rc is half 
the quiescent drop). Sore has doubled, to 100Q. That takes the denominator 
up to 250!2, from 200!2: up 25%; that should drop gain 20%: 

gain is down to 80 

b) -when the output swings to about+ 5v? 

ere Ic is up 50%, sore is down to 2/3 of its quiescent value: down from 50Q to 
33Q, dropping the denominator from 200!2 to 183Q (or 'about 180'): down 
about 8%, taking gain up about 10%: 

gain is up to 110 

c) What is the amp's Zout? 

zout is the impedance of the two paths one sees when 'looking' back at the circuit from the 
output: the collector resistor parallel whatever the collector itself looks like. But the 
collector looks like a very large resistor, since the transistor current is determined. The 
transistor is a current source: it allows large ~V for very small M; in other words, its 
impedance is very large. 

So, Zout (which is not frequency-dependent, and could as well be called Rout) is just Rc: 

Rout = Rc = 20k 
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Lab 5: Transistors II 

Reading: Chapter 2.10- 2.14 

Problems: Problems in text. 

5-l. Dynamic Curve Tracer 

Additional Exercise 7. 
Bad Circuits C,F, H, I 

We will use the setup below to trick the scope into showing a display of I versus V, first 
for a diode, then for a transistor. 

Figure LS.l: Dynamic CUIVe tracer 

Wire up the VI curve tracer shown above. Explain how it works. Could one use the 
function generator instead of the 6.3V transformer? 

Now let's try it out. 

A. Diode Curve 

Try the curve tracer on a 1N914 diode. Be sure you discover where zero voltage and 
current are on the screen, by alternately zeroing the input from V and H. Figure out the 
calibration (mNdiv, V/div), and then make a reasonably accurate plot on graph paper. 
Compare it with the graph you made in lab 1-3. Stare at the diode display, to get a feeling 
for the Ebers-Moll equation. Then reverse the diode polarity. 

Replace the 1N914 (ordinary signal diode) with a 1N749 or 1N751 or equivalent (4.3V or 
5.1 V zener diode), and plot its characteristic also. 

Before leaving this exercise, note the slope of the diode curve (forward). ll. Vdiode/ll.~iode 
should be about 100 mY/decade. 
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B. Transistor Curve 
In place of the diode, install a 2N3904 transistor as shown below. Use the curve tracer as 

before. You now can watch IE versus V BE· How close is this to the characteristic of greater 
interest to us, Ic versus V8 E? 

Figure L5.2: Curve tracer applied to transistor 

Do you see the breakdown voltage of the BE junction? 
It is not good for the transistor to have its junction continually broken down, so install the 

protection diode shown below: 

scope 

e--~t-'--e-~---eH 

Figure L5.3: Protection diode Added 

What is the slope of the transistor's curve? (~V8E/Mc should be about 60 mY/decade.) 

5-2. Grounded Emitter Amplifier 

Figure L5.4: Grounded emitter amplifier 

Wire up the circuit in the figure above (close to Text figure 2.37). First, check the 
quiescent collector voltage. Then drive it with a small triangle wave at 10kHz, at an 
amplitude that almost produces clipping (you'll need to use plenty of attenuation- 40dB 
or more - in the function generator). Does the output waveform look like the figure below 
(text figure 2.36)? Explain to yourself exactly why this "bam-roof' distortion occurs. 

t Vee 

o-+--------
tirne ____. 

Figure L5.5: Large-swing output of grounded emitter amplifier when driven by a triangle wave 

Now remove the 15J..tF capacitor, increase the drive amplitude (the gain is greatly 
reduced), and observe a full-swing triangle output without noticeable distortion. Measure 
the voltage gain- does it agree with your prediction? 
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Restore the 15jlF capacitor, and reduce the function generator output to the minimum 
possible. Predict the voltage gain at the quiescent point, using rc. Measure it; does it agree? 

5-3. Current Mirror 
A. Simple Mirror 

1. Discrete Transistors 

2N390{, 
(Pt-JP) 

15k 
0-10mA 

Figure L5.6: Classic PNP current mirror 

Build the classic current mirror shown above (same as text figure 2.44). How closely 
does the output current equal the programming current? (You can calculate the latter 
without measuring anything.) 

The match should be pretty bad, because of a combination of temperature and Early 
effects. Both tend to make lout larger than !program· (Do you see why Q2 predictably runs 
hotter than Q1 ?) 

Now try squeezing one of the transistors with your fingers, then the other, to see how 
much lout is affected by differences in temperature between Q1 and Q2. You should find that 
you can nudge lout up or down by warming one transistor or the other. Convince yourself 
that the pattern of response that you see makes sense. 

2. Matched Transistors 

1 !(; 

3 b 9 10 13 z 15" 
3 1't 

4 1'3 
5 1'2 
{, 11 1-< 5-< ·-< ll-< 14-< 

2 ' 7 ~ ~ 7 10 

"--------v---J 8 9 

3 NPN's 2 PNP's TOP VIE\1/ 

Figure L5.7: CA3096 transistor array: pinout 

Now build the same circuit but using a monolithic transistor array, the CA3096. The 
figure above shows the "pinout" of this integrated circuit. Measure lout• using the matched 
PNP pair of the CA3096 in the original mirror circuit above. How closely does the output 
current match the programming current? 

This version of the mirror should perform better than the earlier circuit for two reasons. 
First, the two transistors will run at the same temperature because of their proximity. 
Second, at a given current the two transistors' V BE's are pretty well matched: the best 
version of the CA3096 (the CA3096A) has VBE's matched to 0.15mV (typical), and 5mV 
(maximum). (What ratios of collector current do these VBE's correspond to?) 
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But you are likely to see lout greater than ~rograrn in this improved circuit. Why? Add a 
lOk potentiometer in series with the current meter, and vary its setting: does lout vary? 
Why? 

B. Wilson Mirror 

Early Effect in the preceding circuit predicts considerable variation in ~ut (we saw about 
15% variation when we tried it). 

The Wilson Mirror, below, beats that effect. Try it, watching the variation in lout as you 
vary R1oad· Watch Vout at the same time. How constant is current now? What property of 
this circuit accounts for the improved performance? (Wilson mirrors are available as 3-
terrninal integrated circuits, in a T0-92 package.) 

2N 
3~0b 

current 
meter 

Figure LS.8: Wilson mirror 

How good a current source is the current mirror, compared with the current source you 
built in the last lab? We have made you labor a bit to produce a respectable mirror. Query: 
If mirrors are so ready to misbehave, why are they useful circuits? (In what ways do they 
perform better than the current source you built last time?) 

5-4. Ebers-Moll Equation 
Wire up the circuit you used in Lab 4 to measure hFE (see the figure below). Again, use the 
substitution boxes for R, to generate collector currents going from a few microamps to a 
few milliamps. Plot the logarithmic increase of V BE with Ic, and confirm the 
"60mV/decade" law. (Don't work too hard: perhaps 5 points should reveal the curve.) 

+5 

+15 volfs 

+ {o-5q.....A 
~ 0-1IVIA 
- 0 -10mA 

lk 

v DIGITAL 
VOLTMETER 

7 
0-1 Vol+- ron9e. 

Figure LS.9: Circuit for measuring Ic vs. V BE 
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5-5. Biasing: good and bad 
Generally we use an emitter resistor to stabilize common-emitter amplifiers against 

temperature effects. The next two circuits show, first, another way to achieve stability, and 
second, the problem of instability that both schemes try to solve. 

a. Biasing With DC Feedback 
+15 

Figure LS.lO: Grounded-emitter amplifier stabilized by DC feedback 

Wire up the grounded emitter amplifier with de feedback shown above. This is the 
clearest application so far of feedback-a concept and technique that you will see again and 
again when you begin to work with operational amplifiers (introduced in Chapter 4). 

Note that this is de feedback: that is, it stabilizes the quiescent point, but does not affect 
circuit gain. (In this respect it differs from most of the feedback examples you will meet in 
Chapter 4.) Why is this statement correct? (Hint: the feedback from collector to base forms 
a divider with the output resistance of the signal source.) 

This arrangement provides some bias stability. The nominal collector quiescent point is 
11 • V BE• or roughly 7 volts. (Do you see why?) If the quiescent collector voltage were 
more than that, for instance, the base divider would drive the transistor into heavy 
conduction, restoring the proper operating point; similarly, the proper operating point would 
be restored if the quiescent point were to drop. 

Check to see if the quiescent collector voltage is approximately correct. Since V BE 

depends on temperature, you should be able to shift the collector voltage a small amount by 
warming the transistor between your fingers: which way should it move? In practice this 
slight temperature sensitivity is not a major drawback; biasing a grounded-emitter stage 
without such a feedback scheme is considerably more uncertain, as we will now see. 

b. An example of bad biasing 

In order to appreciate stable biasing it helps to see a crummy circuit in action. Here is 
one. sok 

~+15 

Ri. 
b8k 

Figure LS.ll: Poor biasing scheme for the grounded emitter amplifier 

The circuit shown above assumes a particular value of ~. violating one of the design rules 
that the text urges on us. 
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To build this circuit, you need only disconnect R1 from the collector (fig. L5.10), and 
connect R1 instead to the pot, as shown above. After you have adjusted the pot to make the 
circuit work satisfactorily (symmetrical swing without clipping), replace the 2N3904 
(typical~ of 100) with a 2N5962 (typical~ of 1000), and note the collector saturation 
(V C-quiescent too low). Such a bias scheme is very hFE-dependent, and a poor idea. 

Leave the 2N5962 in the circuit, and reconnect the 68k resistor (R1) to the collector (the 
original circuit). Verify correct biasing, even with this large change in hFE· 

To get a preview of additional pleasures in using feedback, try modifying the circuit so as 
to allow signal feedback as well as the DC feedback demonstrated earlier. We will talk 
about this in detail in Chapter 4; but to see that something interesting is happening, put a 
6.8k resistor in series with the input signal, and note the good linearity at large swing (use a 
triangle wave, again). Note also that once again we have traded away one good thing (large 
gain) to get another (linearity, or constant gain). 

5-6. Push-Pull 
+I~ 

-15 

Figure L5.12: Complementary push-pull emitter follower 

Explore "crossover distortion" (a notion that may be familiar to audio enthusiasts) by 
building the push-pull output stage shown above. 

Drive the circuit with sine waves of at least a few volts' amplitude, in the neighborhood 
of 1kHz. Be sure the offset control of the function generator is set to zero. Look closely at 
the output. (If things behave very strangely, you may have a "parasitic oscillation". It can 
be tarned by putting a 470 ohm resistor in series with the common base lead. This is a trick 
we used earlier to stabilize the follower: lab exercise 4-4; if necessary, add also a 1 OOpF 
capacitor from circuit output to ground.) 

Try running the amplitude up and down. Play with the de offset control, if your 
function generator has one. 



124 

Class 6: Transistors III 
Differential Amp; Miller Effect 

Topics: 

• one last important circuit: 

difference amplifier 

• finer points: 

bootstrap: to boost input impedance-a trick you will see again 

Miller effect and its remedies: cas code amp 

Differential Amplifier 
Text sec. 2.18 
Lab 6-1 

The differential amp is the last standard transistor circuit we will ask you to consider. It 
is especially important to us because it lets us understand the operational amplifiers that you 
soon will meet. These wonderful devices are in fact just very good differential amps, 
cleverly applied. 

Why a differential amp? 

A differential amplifier has an internal symmetry that allows it to cancel errors shared by 
its two sides, whatever the origin of those errors. Sometimes one takes advantage of that 
symmetry to cancel the effects of errors that arise within the amplifier itself: temperature 
effects, for example, which become harmless if they affect both sides of the amplifier 
equally. In other settings the shared error to be canceled is noise picked up by both of the 
amplifier's two inputs. Used this way, the amplifier picks out a signal that is mixed with 
noise of this particular sort: so-called "common-mode" noise. 

You built a circuit, back in Lab 2, that did something similar: passed a signal and 
attenuated noise. But that RC filter method works only if the noise and signal differ quite 
widely infrequency. The differential amp requires no such difference in frequency. It does 
require that the noise must be common to the two inputs, and that the signal, in contrast, 
must appear as a difference between the waveforms on the two lines. Such noise turns out 
to be rather common, and the differential amp faced with such noise can "reject" it (refuse 
to amplify it), while amplifying the signal: it can throw out the bad, keep the good. 
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Here is an example of a problem that might call for use of a differential amplifier: 
An application: brain wave detector 

One can detect brain activity with skin contacts; the activity appears as small (microvolt 
range) voltage signals. The output impedance of these sources is high. 

[.J3!J C0f111>1Dn .SJtJt':J (1?D/se) 

ls~»all d·~~•re ""''j (siy~~l) 

\:.; 

Figure N6.1: An application for a differential amp: brain wave detection 

The feebleness of the signals makes their detection difficult. It is not hard to make a high
gain amplifier that can make the signals substantial. But the catch is that not only the 
signals but also noise will be amplified, if we are not careful. We can try to shield the 
circuit; that helps somewhat. But if the principal source of noise is something that affects 
both lines equally, we can use a differential amplifier instead--or as well; such a circuit 
ignores such "common mode" noise. 

60 Hz line noise will be coupled into both lines, and is likely to be much larger than the 
microvolt signal levels. A good differential amp can attenuate this noise by a factor of 
perhaps 1000 while amplifying the signal by a like amount (that would amount to a 
"common-mode rejection ratio"-a preference for difference signals--of 106: 120 dB). 

A Differential Amp Circuit 
Lab 6-1 

Here is the lab's differential amp: 

-15 

Figure N6.2: Differential amp 

The circuit is not hard to analyze, if you use a trick the Text suggests: consider only pure 
cases-pure common signal, then pure difference signal. 

Text sec. 2.18 

Let's consider the important properties of this circuit: 

Quiescent point: 

Vout: Before you can predict Vout you need to determine currents. 
Currents: If the bases are tied to ground, as shown, the base voltages are close to ground, 

and it follows that point "A" is not far from ground (close to -1 v.). From this observation 
you can estimate Itail (in the lower 7.5k resistor): it is about 14Vn.5k"" 2 rnA. 
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Since the circuit's inputs are at the same voltage, symmetry1 requires that the 2mA tail 
current split evenly between the two transistors. So Ic in left and right transistors is about 1 
rnA each. From here V out quiescent is easy: centered as usual-but note that it is centered not 
between the supplies (that center would be OV). Instead, it is centered in the range through 
which it can swing. That is always the deeper goal. 

Differential Gain: 
Assume a pure difference signal: a wiggle up on one input, a wiggle down of the same 

size on the other input. It follows, you will be able to convince yourself after a few 
minutes' reflection, that the voltage at "A" does not move. 

That observation lets you treat the right-hand side of the amp as a familiar circuit: a 
common-emitter amp: 

+Vee +i5v 

Rc 7.'5k 

,..,. rv-
t:.Vin ..iWin 
""""""2"' -2-

~ 

'Re 
in JeMral 

100!1. 
in +his case. 

(fAH ttAu 

Figure N6.3: Differential gain: just a common emitter amp again 
The gain might seem to be 

G = -Rc I (re + RE). 

That's almost correct. You need to tack a factor of two into the denominator, just to reflect 
the way we stated the problem: the delta v applied at the input to this "common emitter" 
amp is only half the difference signal we applied at the outset. You also might as well throw 
out the minus sign, since we have not defined what we might mean by positive or negative 
difference between the inputs. 

So, the expression for differential gain includes that factor of two in the denominator: 
Gdiff = Rc I 2(re + RE) 

Common Mode Gain: 

Assume a pure common signal: tie the two inputs together and wiggle them. Now A is 
not fixed. Therefore, this common-emitter amp has much lower gain, because Rtail appears 
in the denominator of the gain equation: ~il plus re plus RE. 

Again that is almost the whole story; another odd factor of two appears, however, to 
reflect the fact that a twin common-emitter amp--the other side of the differential amp-is 
squirting a current of the same size into Rtai!· The result is that the voltage at A jumps twice 
as far as one might otherwise expect: one can say this another way by calling the effective 
Rtail "2 Rtai!·" 

So, the Common Mode Gain is: 

GeM=- Rc I Cre + RE + 2(Rtail) ) 

I. "Symmetry?," you may want to protest. "There's a collector resistor on one side, and not on the other." True. But try to 
explain to yourself why that does not matter. 
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-.-----... +ISv 

-+----!Sv 

Figure N6.4: Common-mode gain: redrawing the differential amp 

The bigger Rtail, evidently, the better. A current source in the tail, therefore, provides best 
common-mode rejection. A respectable differential amplifier normally includes a current 
source in the tail. 

Miller Effect 
Text sec. 2.19; 
Lab 6-3 

This is a high-frequency effect-a gain roll-off-and you will not often see it in our 
labs. It presents a real challenge (and headache) to anyone who must design for high 
frequencies. Manufacturers do what they can, by reducing the capacitance between base 
and collector; the circuit designer then must use his head so as to eliminate the exaggeration 
of CcB that Miller describes. 

Miller Effect 

In an inverting amplifier, the small capacitance between input and 
output (base and collector, for a common-emitter amplifier) is 
effectively enlarged by circuit gain, so that it behaves like a 
capacitance (1 + Gain) times as large, going to ground. 

~small 

~he~ 
adval capacitarx::e M,//er f'YlodeL 

Figure N6.5: Miller effect 

Miller noticed that the small CcB (a few picofarads) acts like a capacitance (1 + Gain) times 
as big as CcB• connected between the base and ground. Since that cap to ground and Rsource 
form a low-pass filter, high frequencies lose, and they begin to lose at an f3dB lots lower (" 1 
+ Gain" times lower) than f3dB without Miller Effect. 



128 Class 6: Transistors III: Diff amp; Miller Effect 

Rsovrte 
~ 

I 

::~ :: C n;l/er 
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' ' 
f&j~· (r,J f 

(no M,J\er 
<fred) 

Figure N6.6: Miller effect: "low-pass" 

N6- 5 

Evidently, Rsource is important. If you could keep Rsource zero, you would see no Miller 
Effect. If you can keep Rsource very small, your circuit may still pass the frequencies it 
must. 

If you don't want to lower Rsource or cannot do so sufficiently, then you can use 
cleverness to arrange things so that base and collector of any one transistor do not head in 
opposite directions at the same time. That arrangement will eliminate Miller Effect. 

You will notice that both the cascode and differential amplifiers use that strategy (p. 84, 
and below). 

Why does the fact that base and collector head in opposite directions increase the apparent 
size of CcB (compared to what Ccs would look like if connected to ground)? 

Recall that the size of the current flowing into a cap is proportional to dV /dt across the 
cap (I = C dV /dt). dV /dt across the cap between base and collector is increased by fact that 
the collector always perversely races away from the base: when the base wiggles, the 
collector jumps in the opposite direction. The change in voltage between base and collector 
is (1 + Gain) times the input change. Since dV /dt across the cap is enlarged, so is leap· The 
cap's apparent impedance thus is proportionately decreased. So in the voltage divider that 
is the low-pass filter, less of the signal survives. 

Another way to look at what's happening (if you're not already worn out) is to consider 
Ccs as a path for feedback of a signal that opposes any change at the base. The smaller the 
impedance of Xcca' the more effective the output wiggles will be in killing the input signal. 
That's negative feedback-useful in other settings (it will do wonderful work for you in 
Chapter 4}---but harmful when you want lot of gain. 

Source Resistance is Crucial 

Whichever way you explain Miller Effect to yourself, Rsource driving the transistor's base 
is important. 

If you look at the effect as a result of feedback, then ~ource matters because it forms half 
of a divider that determines what fraction of the output wiggle does get fed back: the bigger 
the fraction, the more effective the output wiggle will be at killing the input signal. 
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Figure N6.7: Miller effect viewed as feedback 

On the other hand, if you see the circuit as simply a low-pass filter, then Rsource evidently 
determines f3dB· 

Either way, you want Rsource as low as possible. All the clever remedies for Miller Effect 
do nothing more than put a very low impedance at the base of the transistor whose collector 
is jumping. 

That's true in the cascode, where the additional transistor's base is tied to a DC voltage 
source. 

Text sec. 2.19, 
fig. 2.74 

Vc.c. 
-I-/5V 

) Vc moves, 
{ bvt RSovrce "'0 

~ Rsovrc~ ~»ay be lar5e, 
bvt Vc c.lampe.l 

Figure N6.8: Cascade beats miller effect 
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It's true in the single-ended-input differential amp, where the base of the output transistor 
is tied to ground: 

- vliOE" 

Figure N6.9: Differential amp beats miller effect (single-ended-input only) 

It's only to the extent that the signal's impedance is larger than that of the cleverly
planted DC source that these Miller-killer circuits get you anywhere. 
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Problem: differential amplifier 
Design a differential amp to the following specifications: 

• Power supplies: ± 15V 
• lc quiescent"" 0.5 rnA 
• GainDiff = 25 
• Gaincommon-mode:::; 1 

Questions: 

1. When you have designed the circuit, estimate the common-mode 
gain, and the CMRR in dB. 

2. How could you improve the CMRR a great deal? 
3. What is the input impedance (at signal frequencies), for a single

ended input (just ground the other input)? 
4. Show how to wire the inputs so as to give best high-frequency 

response for a single-ended input (that means, "not differential; 
ground one input"). Explain briefly how your arrangement works 
to beat Miller Effect. 

5. If resistors were included on the collectors of both transistors that 
form the differential pair-making the circuit fully 
symmetrical-would the usual Miller-killer trick work (the trick 
we hope you just told us about in answering the previous 
question)? Explain your answer. 

6. If the emitter resistors were omitted, what effects on circuit 
performance would you see? Specifically, what, if anything, 
would happen to-

• output quiescent point; 
• gain (you need not calculate the gain; speak 

qualitatively) 
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Solution 

Questions: 

Ch. 2: Worked Example: Differential Amplifier 

3. Choose Rt: tor 
rr!buired JR, in: 

G.:/;q: = 2(r; +I?E) 

~ Re = ZS'ofl.. 

Re 
ZSOJl. 

+15 y 

Rtail 
1Sk. 

-15v 

1. Choose Rc. +o center 
Vout ,·n ava,(ai:>le ran5e: 
VQ = +7.5v, not ov, 
<1ssumin3 1nputs a~ 
usual~ dose -It, 9round. 
~ R.c. = 1Sk. 

2. Choose 'Rtail for 
twice Ic (%uiescent), 
ie., 1mA. 

Figure X6.1: Differential amplifier: solution to design problem 

X6-2 

1. When you have designed the circuit, estimate the common-mode gain, and the CMRR in 
dB. 

CMRR = Gdirr I (GeM) 
GeM= -Ref (re + RE + 2RTail) "'-15k/ 2(15k) "'-0.5 
CMRR = 25/0.5 = 50 
dB = 20 log10 (AiA1) ; dB = 20 log10 50= 20(1 + log105) = 20(1 + 0.7) "' 34dB 

2. How could you improve the CMRR a great deal? 

Put a current source in the tail, in place of RTail· This should push the GeM down 
to a few parts in a thousand, boosting CMRR proportionately. 

3. What is the input impedance (at signal frequencies), for a single-ended input Gust ground 
the other input)? 

~ 
Irn;edance here is 
CJn::: hFE x £im;ed'iJ~ce at 

em•Her J 
'Z 100 X ( re 4 RE ~ RE • re) 

= 1oo X (oo • 2So + 2S'o. so) 

= Go k.n. 

Figure X6.2: Input impedance: single-ended input 
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4. Show how to wire the inputs so as to give best high-frequency response for a single
ended input (that means, "not differential; ground one input"). Explain briefly how your 
arrangement works to beat Miller Effect. 

No /-1,{/er effed 
heTP, because 
co/ledor is damped 
(held) at +IS uolfs. 
TherPfi,rr? Kso un::e 
d~s not form .3 

Wwf~SS ftlhr wifh 
an enlaryeJ Cc b. 

+15v 

-15v 

otJt / 1'1,(/e r pfted: 
ps:: harml~s here: 

Cc); is enla1"5ed 
_ (by volf<IJe Jain), 
· but relevant 

Rsource =o 
(6-.se is 9rvunded); 
So) ??o harm. 

Figure X6.3: Beating Miller Effect 

5. If resistors were included on the collectors of both transistors that form the differential 
pair-making the circuit fully symmetrical-would the usual Miller-killer trick work (the 
trick we hope you just told us about in answering the previous question)? Explain your 
answer. 

No. Wouldn't beat Miller effect Q1 's collector then would hop about, degrading 
frequency response as in the usual common-emitter configuration. This is a good 
reason not to include Rc above Q1, despite the appeal of symmetry. 

6. If the emitter resistors were omitted, what effects on circuit performance would you see? 
Specifically, what, if anything, would happen to-

• output quiescent point; 

Nothing. This is set by RTaH· RE, at 250n, is negligible relative to the 15k of 
RTail· 

• gain (you need not calculate the gain; speak qualitatively) 

Omitting REgives much higher gain, and distortion as well. 
The circuit is not vulnerable to temperature, however, if both Q's stay at the 

same temperature. So, RE is not required in the differential amp as it is in the 
common-emitter (except where some other scheme is used to provide 
temperature stability). 

(A fine point: if the two transistors are not on the same IC, you might want to 
put in a collector resistor above Q1, to make quiescent power dissipations equal. 
But ordinarily you probably would use a matched pair of transistors, fabricated 
on one IC.) 
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Lab 6: Transistors II 

Reading: Chapter 2.15 to end 

Problems: Problems in text. 
Additional Exercises 2 (this one is hard), 
4, 5, 6, 8. 
Bad Circuit G. 

6-1 Differential Amplifier 
Predict differential and common-mode gains for this amplifier (don't neglect rc). 

-..------+- + 15 

-15" 
Figure L6.1: Differential Amplifier 

Now you will use two function generators to generate a mixture of common-mode and 
differential signals. 

Preliminaries 
One generator will drive the other. This scheme requires that you "float" the driven 

generator: find the switch or metal strap on the lab function generator that lets you 
disconnect the function generator's local ground from absolute or "world" ground. You will 
find this switch or strap on the back of most generators. 

i="L04 T CHASSIS 

lliiil1d 
c{eta.L stra.p ~ slide Skli-fch 

Figure L6.2: "Float" One Function Generator 

As you connect the two function generators to your amplifier, you will have to use care to 
avoid defeating the "floating" of the external function generator: recall that BNC cables and 
connectors can make implicit connections to absolute ground. You must avoid tying the 
external generator to ground through such inadvertent use of a cable and connector. You 
may find "BNC-to-mini-grabber" connectors useful: they do not oblige you to connect their 
shield lead to ground. 
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Composite Signal to Differential Amplifier 
Now let the breadboard's function generator (which cannot be "floated") drive the 

external function generator's local ground. Use the output of the external function 
generator to feed your differential amplifier. 

51. fl. 

out 

Series 
resistor·,.-~,...-...,....,~----.... 

fvndion 
generator 

output 

breadboard. 
/ 

Figure L6.3: Common-mode and Differential Signal Summing Circuit 

A. A mediocre differential amp: resistor in 'Tail' 

Measure common-mode and differential gain 

Suggestion: measuring common-mode and differential gain 

Measure common-mode gain: 
Shut off the differential signal (external function generator) 

while driving the amplifier with a signal of a few volts' 
amplitude. Does the common-mode gain match your 
prediction? 

Measure differential gain: 
Turn on the external function generator while cutting common

mode amplitude to a minimum (there is no Off switch on the 
breadboard function generator). 

Apply a small differential signal. (What is the circuit's f3dB ?) 
Does the differential gain match your prediction? 

Now turn on both generators and compare the amplifier's output with the composite 
input. (To help yourself distinguish the two signals, you may want to use two frequencies 
rather far apart; but do not let this obscure the point that this differential amp needs no such 
difference: the method you used a few labs ago to pick out a signal while rejecting noise did 
require such a difference. Do you remember that method?) 

This experiment should give you a sense of what "common mode rejection ratio" means: 
the small amplification of the common signal, and relatively large amplification of the 
difference signal. 

Nevertheless, this circuit still lets a large common-mode signal produce noticeable effects 
at the output. The improvement in the next step should make common-mode effects much 
smaller. 
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B. Improving Common-mode Rejection: Current source in 'Tail' 

Replace the 7 .5k "tail" resistor with a 2 rnA current source: 

-15v 

Figure L6.4: 2 rnA Current Source for Tail of Differential Amp 

L6-3 

This change should make common-mode amplification negligible. (What is common
mode gain if the output impedance of the current source is around 1 M?) 

See how this improved circuit treats a signal that combines common-mode and 
differential signals. 

6-2 Bootstrap 

+IS" vol+s 

wk 
1ok 

~---'\:\/\r·-~ 1--+----<11----1 
i 0.1J'F 

:·:: .... ~: 
·r 

c. 
_j __ 

1ok 

Figure L6.5: Bootstrapped emitter follower 

The circuit above illustrates a neat and useful trick, even though (as the text confesses) it 
is not of great practical importance in this form. You will see the technique of 
bootstrapping used repeatedly (see, e.g., circuits at 4.09 and 7.10). 

Begin by connecting up the emitter follower shown above (same as text figure 2.63). 

a) First, omit the l5J1F capacitor. What should the input impedance be, approximately? 
Measure it, by connecting 10k in series with the function generator and noting the drop 
from A to B. Check that the output signal (at C) has the same amplitude as the signal at B 
(use an input frequency in the range of 10kHz-100kHz). 

b) Now add the l5J1F bootstrap capacitor. Again measure the input impedance by 
looking at both sides of the 10k series resistor with the scope. Make sure you understand 
where the improvement comes from. 

Challenge to the zealous: you can do better than say, "The 4.7k looks big." You can 
estimate how big if you note that re forms a voltage divider with the emitter resistor, passing 
a large fraction of delta V b through as delta V e· That large fraction lets you estimate delta V 
across the 4. 7k resistor (treat the big cap as a short at signal frequencies). What is the 
apparent value of the 4.7k, then, seen from the input? (Disappointing footnote: you will not 
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be able to test your calculation experimentally, because you have only a very rough estimate 

for the transistor's ~.) 

6-3 Miller Effect 

-tl,__ __ _..._ + 15" vol+s 

Figure L6.6: Bypassed-emitter NPN amplifier for exploring Miller effect 

a) Miller effect invisible 

Begin by constructing the high-gain (bypassed emitter) single-ended amplifier shown 
above. Predict the voltage gain, then measure it (short the lk input resistor). Check that the 
collector quiescent voltage is reasonable. 

b) Seeing Miller effect 

Now restore the lk series resistor (it simulates finite generator impedance, like what you 
might find within a circuit). Measure the high- frequency 3dB point. 

Now add a 33pF capacitor from collector to base (dotted lines). 
This swamps the transistor's junction capacitance of approximately 2pF, exaggerating the 

Mil:er effect. Remeasure the high-frequency 3dB point. Explain it quantitatively in terms 

of the effective capacitance to ground produced by the Miller effect. 
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c) Beating Miller effect 

Cascode circuit 

Lab 6: Transistors II L6-5 

Modify the amplifier by adding the second transistor shown below, which clamps the 
collector voltage of the input transistor. The circuit so modified is called a cas code. 

1,'Sk 

Figure L6.7: Cascode amplifier 
Measure the high-frequency f3dB of the cascode amplifier, with the 33pF capacitor still in 

place between collector and base, and lk series resistor still in place. Is Miller effect still 
apparent? How does the cascode work? 

6-4 Darlington +15" 

{
0-irnA 
0-10"'A 

Figure L6.8: Darlington test circuit 
Use a substitution box for R. Connect two 2N3904's in the Darlington configuration 

shown above, and measure the circuit's characteristics as follows: 
a) Begin by reducing R to a few thousand ohms, in order to bring the transistor into good 

saturation; at this point Ic = 15rnA. Measure V c (the "Darlington saturation voltage") and 
Vs of Q1 ("Darlington VsE"). How do they compare with typical single-transistor values? 
(Measure Q1 alone, if you don't know, by grounding its emitter.) Explain. 

b) IncreaseR into the range of 500k-10Meg, in order to get Ic down to a few milliamps. 
Measure hFE at collector currents around lmA and lOrnA (as earlier, measure Ic, but 
calculate Is from the value of R). 

6-5 Superbeta 
Substitute a single superbeta 2N5962 for the Darlington pair, and make the same set of 

measurements, namely VBE• V CE(sat)' and hFE at collector currents around lmA and lOrnA. 
Does it meet the "typical" values graphed in figure 2. 78 of the text? 
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• Generally 

ground rules: preconditions assumed 
two models: current amp(~ ... ); voltage amp (Ebers-Moll) 
biasing: design rule: set voltage at base, not current 

• Important Circuits 

switch 
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Here, with transistor saturated, usual ~ rule does not apply: Ic = typically 
about 10 xB 
follower 

+ impedance-changing: here is one of the few cases where you need 
to use ~in your calculation (but a worst-case ~) 

+ push-pull: a variation 

common-emitter amp 

+ "degenerated" (emitter resistor) (an early view of feedback!) 
+ distortion <- greed for gain 

current source 

+ current mirror 

differential amp 
Important for several reasons: 

+ it's the guts of any op amp 
+ inherently temperature compensated (though not in "tail" current 

source) 
• can beat Miller effect 

• General Problems (revisited) 

temperature effects: remedies: 

+ compensation (e.g., mirror; differential amp) 
+ RE as feedback (e.g., degenerated emitter common-emitter amp) 

Early Effect: remedies: Wilson mirror; rE 

Miller Effect: remedies: cascode, differential 
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biasing 

bootstrap 

Ch. 2: Jargon and Terms 

(Sec. 2.05): setting quiescent conditions (see below) so that circuit 
elements work properly. To bias means, literally, to push off-center. 
We do that in transistor circuits to allow building with a single 
supply. The term is more general, as you know. (Compare Ch. 1, 
sec. 1.30, where a diode is biased into conduction.) 
(Sec. 2, 17): In general, any of several seemingly-impossible circuit 
tricks (source of term: "pull oneself up by the bootstraps:" 
impossible in life, possible in electronics!). In this chapter refers to 
the trick of making the impedance of a bias divider appear very 
large, so as to improve the circuit's input impedance. Also collector 
bootstrap. See sec. 2.17. 

bypassed (-emitter resistor) 

cascode 

clipping 

compliance 

(Sec. 2.12): In common-emitter amp, a capacitor put in parallel with 
RE is said to bypass the resistor because it allows AC current an easy 
path, bypassing the larger impedance of the resistor. Used to achieve 
high gain while keeping RE large enough for good stability. 
circuit that uses one transistor to buffer or isolate another from 
voltage variation, so as to improve performance of the protected 
transistor. Used in cascode amplifier to beat Miller effect, in current 
source to beat Early effect. 
(E.g, Sec. 2.05 follower design procedure, Step 1): Flattening of 
output waveform caused by hitting a limit on output swing. 
Examples: single-supply follower will clip at ground and at the 
positive supply; follower described in sec. 2.03 at p. 67 clips when 
loaded with lk. 

(Sec. 2.06): Well defined in text: "The output voltage range over 
which a current source behaves well .... " 

Early effect variation of Ic with VeE· Thus it describes transistors's departure 
from true current-source behavior. 

emitter degeneration (Sec. 2.11): Placing of resistor between emitter and ground (or other 
negative supply) in common-emitter amp. It is done so as to 
stabilize the circuit with variation in temperature. (Source of term: 
gain is reduced or "degenerated." General circuit performance is 
much improved, however!) 

impedance "looking" in a direction 

Miller effect 

(Sec. 2.05): impedance at a point considering only the circuit 
elements lying in one direction or another. Example: at transistor's 
base impedance looking back one "sees" bias divider and Rsource; 

looking into base one "sees" only J3 x RE. 

exaggeration of actual capacitance between output and input of an 
inverting amplifier, tending to make a small capacitance-behave like 
a much larger capacitance to ground: I + Gain times as large as 
actual C. 
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quiescent (-current, -voltage) 
(Sec. 2.07, etc.): condition prevailing when no input signal is 
applied. So, describes DC conditions in an amplifier designed to 
amplify AC signals. Example: Vout quiescent should be midway 
between V cc and ground in a single-supply follower, to allow 
maximum output amplitude (or "swing") without clipping. 

split supplies (Sec. 2.05): Power supplies of both polarities, negative as well as 
positive. Used in contrast to "single supply." 

transconductance (Sec. 2.09): Well defined in Text. Briefly,= MouiLlVin· 

Wilson mirror improved form of current mirror in which a third transistor protects 
the sensitive output transistor against effects of variation in voltage 
across the load (third transistor in cascode connection, incidentally). 
(Sec. 2.14, fig. 2.48.) 
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CHAPTER3 

Class 7: FETs I 

Topics: 

• PETtypes 

we concentrate on N-channel 

two distinctions, within this category: 

+ JFET Gunction PET) versus MOSFET (insulated-gate PET) 

+ depletion mode (all JPETs, occasional MOSPETs) versus 
enhancement mode (most MOSFETs, no JPETs) 

• Applications 

WhyFETs? 
Text Ch. 3 introduction; 
Text sec. 3.05, pp.l24-25 

current source 

follower 

voltage-controlled resistance (less important) 

We use them, because they can do some jobs better than bipolar transistors. Consider 
PETs when you want-

very high input impedance; 

a bidirectional "analog switch"; 

a simple current source (2-terminal); 

a voltage-controlled resistance. 

The first of these PET virtues is by far the most important: enormous input impedance. 

A Physical Picture 
Text sec. 3.01 

The operation of a PET is much easier to describe than the operation of a bipolar 
transistor. You will recall we did not even try to describe why a bipolar transistor behaves 
as it does. 
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A FET, in contrast, just cries out for diagramming: 
Compare Text fig. 3.5 

..JFET 

Si02 
(insulator) 

MoSFET 

Figure N7.1: JFET (junction FEn versus MOSFET (insulated gate) 
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A glance at these diagrams will remind you of the PET's greatest virtue, its very high input 
impedance: The input terminal looks like either an insulator (so-called "MOSFET" type) or 
a back-biased junction (so-called "JFET"). So, no current flows at the control terminal: you 
just apply a voltage; the channel feels the field. Hence the name, of course. 

We Will Concentrate on the Most Familiar Types 
Text sec. 3.01, p. 114; 
3.02,p.ll8; 
see figs. 3.6, 3.7 

As the Text says, FETs come in bewildering varieties of types. We will talk almost 
exclusively about the types that behave pretty much like the bipolar transistor you are most 
familiar with, the NPN: 

+ + + 

;~lr' ~~ jr' ~ f' "lJ 
oFF ~ 

OI'F OFF 

">1.-fn. ??-channeL ??·channel 
Df,Polar- :TFET /"105FET 

Figure N7 .2: Similar control polarities & current flows: NPN & "n-channel" PETs 
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How a FET Works 
Text sec. 3.03; 
fig. 3.11 

Class 7: FETs I N7-3 

Here is a terrifying set of curves, dense with information. We'lllook at just two of these 
curves and the device each describes, and we'll look at these one at a time: 

Ill(oll) (VGS: -5v) 
/ 

PMOS 
enhancel"'"lent 

-5" -4 

NMOS 
enhancernent 

0 ~1 ~2 +3 ~4 +5 
\.lr Vp 

VG-s~ 

Figure N7 .3: I0 vs Vas: a heap of information at a glance 

Two "modes:" On until turned Offvs. Off until turned On 
Text sec. 3.02, p. 118-19 

There are two basic schemes for making a FET. One sort of FET conducts until you stop 
it; the other blocks current until you make it conduct. 

"Depletion Mode" 
Text sec. 3.02 

One kind of FET conducts until you do something to diminish its conductance ("depleting" 
the conducting channel). This kind is really easy to picture: it's just a slab of doped silicon; 
as the name suggests, if you do nothing to it, it semi- conducts: 

-4 -3 -2 -1 0 +1 
v, '*s-

JF E T (de?le+ion) 
(n-channeL) 

G-

~+ 
~ 

VGs =o: 

wtth no hias 
ap;>l/ed. io 5ate., 

cond uc.hon. 

YG<O 

G 

VGs bacl:- biased: 

-ne3a+ive. volfa3e 
at. gate .3i ves . 
dtmintshed eondudton 

Figure N7.4: Slab of semiconductor: FET (depletion mode) before and after a field is applied at gate 

Now apply an electric field-through a back-biased diode junction or across an 
insulator-and thus define a region hostile to conduction, a region of the wrong kind of 
semiconductor material, narrowing the conducting "channel". That's the slab in the second 
image, above. 

All JFETs, and some MOSFETs work this way: they're on until you turn them off. 
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"Enhancement Mode" 
Another kind of FET is designed so that it will not conduct unless you apply a field that in 
effect digs a conducting channel ("enhancing" its conductance). 

-1 

NMOS 
enhancement 

0 v;1 +2 +3 +'+ +5 

VGs (v) ----';> 

G 

MOSFET (enhancemerrt) 
(n- chonnel) 

positive VGs : 

11o cond uc+,;,, crea+es cl.annel, 
leHin1 cvrrent 
flow fY"rJm j) fo S 

"channeL" 

Figure N7.5: Slab of semiconductor, 3 regions: PET (enhancement mode) before and after a field is applied 

This arrangement blocks conduction: the drain region is back-biased with respect to the big 
region (called "body"). 

Now apply an electric field (or "generate" a field, by applying a voltage) so as to create a 
region like the end regions: this channel permits conduction between drain and source. We 
achieve again a continuous slab of semiconductor material. 

Since we need to apply a positive voltage, this time (for an N-channel device), we can 
enhance conductance only for the kind of transistor that uses an insulator to isolate the gate 
from channel: we cannot do the same trick when we rely on a semiconductor junction. A 
junction so forward-biased would conduct, and that would ruin the PET's performance. 

The stronger the field, the deeper the conducting channel. 
A picture cannot, unfortunately, explain the curious fact that the FET behaves like a 

current source rather than resistor, when a substantial voltage is applied across it. Here, as 
for the bipolar transistor generally, we just call the mechanism magic1. 

Applications 

1. Well, we can't resist a try at explaining. As V05 grows, the conducting channel gets wruped-pinched narrower toward the 
drain end than at the source end (since the back-bias there is greater: V GD is larger than Vas). 

(ow Vbs ( finrar) f11'J h 1/os { f'xe rJ 
(V;Lo) CU,rrenf) 

G 

Figure N7.6: Conducting channel gets pinched at one eM, when Vos> a few volts; then the bottleneck IIlB.kes flow·rate (IJY level off 
In that narrow region a kind of traffic jam occurs. The V0 s drop occurs over the short length of that pinched section, 

pushing up the current density in this bottleneck; then, if Yos grows further, increasing the field (drivers at the drain end lean 
on their car horns) the bottleneck--or traffic-jam-region grows longer, and traffic flow or / 0 levels off at its saturation 
value. In short, further increases in V os cause two opposing effects that nearly cancel: stronger field, but reduced carrier 
mobility. So, current stays roughly constant. 

For a fuller explanation and handsome diagrams see Bums & Bond, Principles of Electronic Circuits, sec. 5.2. 
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Current Source 
Text sec. 3.06 

Class 7: PETs I N7-5 

This is the easiest circuit to analyze. If you tie gate to source the transistor has to run at 
Inss· 

0 

VGs 
Figure N7.7: Simplest FET current source: runs at 1055 

If you try to build such a current source with a discrete transistor, you'll be stuck with the 
Inss of the particular part (not even particular type!). That's annoying. (In the lab you will 
use devices wired this way and housed in a little glass package; but these are easy to use, 
because the manufacturer has done the pesky job of sorting sorted them by Inss-) 

The FET current source works only so long as you keep Vns greater than a few volts: out 
of the so-called "linear region," where the FET behaves not like a current source but like a 
resistor. 
Back-biased current source 

Text sec. 3.01, 
fig. 3.2; 
Lab 7-2 

A FET with a bit of back-bias makes a more practical current source: you can adjust its 
current output by choosing R5• In addition, it works a little better: its current varies less, for 
changes in Vns· You can see this on the family of curves below, which show In at several 
values of Vas· (We apologize for the topmost curve-which says that a little forward bias 
increases In; our simple model of FET performance does not predict this; we can pretend 
we didn't notice that top curve, or we can complicate the simple model; let's pretend we 
didn't notice!) 

5 cNS'+8't 
(n-channel JFET) \k;s • O.'lv IY\ore n!la+ive vu,~-l:ion 

't 1" in To hel1!. ..• 

3 
VGs=o ( P., 5 provides feedback 

"'( ten ding to hold TD £ 
~ 

V<Ts= -0.3v 
COhSf!Lhf: 

~ 2 rise in I 0 r&lses. 
bdc k. -ht'a<> -s/c"dt'n .9 ) 

VGs = -o.l.v fo a /ower ~.s curve. 
1 

VGs = -o.9v t thn here 
Vss • -1.2v 

0 
0 10 20 

VDs, votfs 

Figure N7.8: A family of curves: /0 vs. V05: back-bias improves a current source 

The circuit below adds a resistor, Rs, to apply some back bias to Vas· The circuit is easy to 
understand, but choosing Rs so as to achieve a particular current is not easy. If you had a 
good curve describing the transistor's behavior, you could plot the resistor's behavior on the 
same diagram, but with the V-axis reversed; the intersection would reveal the output current 
(Text Appendix F, "Load Lines," sketches this technique.) 
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Textp.127 

Class 7: FETs I 

smaU Rs ~ 
large LD 

-......,£.-----'<-r-1a"3e 'Rs =i> 
small L.D 

Vp 

Figure N7.9: Using 'load line' to find current source operating point 
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In fact, such a transistor curve would be very approximate, so you would have to try the 
transistor in the circuit, and tinker with Rs values. 

Evolving the follower from a current source 

Let's set up a current source, but add a terminal from which its gate voltage can be 
wiggled: 

+lSv 

, , (out, if current .souf'Ce) 

---- out, iF t•llowe,... 

4.7k 

Figure N7.10: Old current sourco--with an input terminal: "self-biased" follower 

Now it's a wiggle-able current source. But if you take the output at the source, you find you 
have a follower: wiggle at source approximately equals wiggle at input (we'll see shortly 
how to evaluate this vague "approximately" in this statement). The circuit's input 
impedance is very good (that is, high). 
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FET Limitations: Gain: FET versus Bipolar 
Text sec. 3.01, 
3.04, 3.05; 
pp.l30-32 

N7-7 

The PET's gain (L'l current out for Ll voltage in: gm, called "transconductance") is lower 
than a bipolar transistor's. 

"normal'' ~ 
Co//ecior 
(or d r-a,·n) 
Curves 

rev~rse.d } 
Co!lecfo,-
{ordrain) 
curves 

Vs£ 

imA Ic 

l3JT FET 
Figure N7.11: Gain: FET vs bipolar transistor ("BJT") 

The gain, like the gain of the bipolar transistor, varies as transistor current varies. For the 
bipolar, we said 

re = 25 ohmsllc (in milliamps) 
That is a roundabout way to say that gain varies linearly with current (!c). 

For the FET, the gain varies linearly with Yas-VT: (the slope of the parabola y=x2 

increases linearly with x). 

liE 
f>,po/ar 9"' is e><f>'ne~ti~l 
f;;o~+,"o,, of. VaE, l•'nel r 
funchon of I.: 

F£T 

g .... •t I= 
(i.e" at VGS =o) 

Figure N7.12: Variation of gain: bipolar versus fet 
To find the transconductance at any given V GS• just find where you are (what fraction of the 
way) between the two V GS values that turn the transistor fully off and fully on. So, for 
example, if gm is 200011-mhos at V as=O, and Vpinchoff is -2V, if the PET is running at 
Vas=-lV, what's the gain? You're at the midpoint of the gain curve (which is just a straight 
line); the gain is 1000!1-mhos (or "1 mAN," a prettier formulation, but less standard). 
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The Text says this, but also says 
"transconductance increases ... as the square root of I0 .... " (p. 132). 

This is just an alternative formulation of the same rule. Use that formulation if you know 
the operating current; use the earlier formulation if you know Vas-and always be warned 
that the data sheet for the transistor gives you only ball-park figures to work with, anyway: 
the spread of both gm and Vpinchoff is wide (see sec. 3.05, p. 123). 

From the PET's mediocre gain-inferior to that of the BJT-several consequences 
follow: 

* FET Amp shows limited Voltage Gain 
+llpb 

---1 

-:- '"7 

Figure N7.13: FET common-source- vs. BIT common-emitter amplifiers: gain in both cases= gm •5k; but the gms are very 
different 

* Follower Output is Attenuated 

Figure N7 .14: FET follower attenuation is easy to predict, using 1/gm exactly analogous to r
0 

Remedies 

Current source replaces Rs. 
Text sec. 3.08 

-Vss 

-vss 
"z~~- o ff~-.t " 

Figure N7 .15: Current source in place of R5 solves follower's attenuation problem 
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* Rout is Mediocre 
Text sec. 3.08, 
p.l34 

Class 7: FETs I 

Figure N7.16: Rout for PET follower is not very good: = 1/gm parallel R5 

N7-9 

Remedy? Get the help of a bipolar follower. The rightmost follower, in the figure above 
(this is the Text's fig. 3.27), does that: uses the bipolar both as current source and as a means 
to drop Rout· 

Recapitulation: strength and weaknesses of FETs:-and how to have it both ways 
PETs are great for high input impedance, but not so hot as amplifiers, and the FET 

follower's output impedance is much higher than the bipolar circuit's. The manufacturers 
of integrated amplifiers know this, of course. So you'll not be surprised to learn that as 
soon as they learned to fabricate both sorts of transistor on one IC, they started building 
circuits that let us have it 'both ways.' 

The LF411 operational amplifier that you will meet in Lab 8, for example, exploits the 
JFET's high input impedance, and then uses a bipolar common-emitter amp in the high-gain 
stage, and finally a bipolar push-pull at the output: 

f', 
I ' ' 

I 

I 
I 

2.1 
1nv 

irw 

I ,.. -'" 

v,.. 
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, LFLt11 
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'" ..---out 
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Figure N7.17: IC op amp, LF411: combines PETs and BJTs,letting each do what it does best 

The '411 's manufacturer was so pleased with itself when it figured out how to put FET and 
BJT on one chip that it gave the process a name, "BIFET," and got a trademark. But 
everyone knows this trick, nowadays. 
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Linear Region: Voltage-controlled resistance, and an application 
Text sec. 3.10 
Lab 7-4 
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Earlier we noticed that FET current sources fail if Vns falls too low-and 'too low' is not 
so low as for a BJT. So a ground rule for use of a FET current source is 'don't let Vns get 
too low. If you violate this rule, you'll find that your 'current source' begins to behave like 
a resistor. 

But sometimes, of course, that's just what you want: a resistor-because it's a nifty sort 
of resistor: one whose value you can regulate with a voltage applied at the gate terminal. 

Here are curves to illustrate how you do this trick. The bipolar and FET curves below 
show roughly similar slopes where the voltage across the transistor is very small: 

1oo 

0 0.1 o.z D.1 0."2 

Va;;, •ol+s Vps, vol+s 

BI'PoLAR fET (/!llO'SfET) 

Figure N7.18: More-or-Less linear (resistive) behavior: bipolar & fet 

This is the saturation region of the bipolar, and one cannot vary the slope there widely. The 
FET does better: the curves are straighter, and one can better control the slope (resistance, 
or !/resistance). 

Here's the lab circuit that applies this behavior: 

f" f cl,oo5l'S 
wf-uch curve 

4
"i ': 

\ -/ 

J3ok 

-15v 

Figure N7.19: FET as variable resistance: V os must be small: Note: resistance curves show the earlier / 0 vs V05 curves rotated 
to make the slope show resistance rather than !/resistance 
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The pot applies a DC bias to the gate; this selects one of the possible curves, with a its 
nearly-constant slope (thus R value). The signal-which must be small: < (VGs-VT is the 
rule)-moves along that curve. Incidentally, the signal voltage, applied as V05, moves 
positive and negative. This swaps roles of drain and source, which is pretty confusing to 
think about, but which introduces no large errors for small signal swings. The resistance 
curves remain pretty-nearly straight, when fixed with the linearizing trick described in the 
Text at p. 139, sec. 3.10, and demonstrated in Lab exercise 7-4 b. That trick is a wrinkle we 
will leave to the lab to clarify. 
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Ch. 7: Worked Examples: Current Source; Source Follower 
Two worked examples (related): 

1. JFET current source 

2. source follower 

Problem: current source and source follower 

1. Design a JFET current source to deliver 2 rnA, given the 
following typical / 0 vs. Vgs curve. (Your design will give only 
approximate results, because of the wide spread of FET 
characteristics; just do what you can with the typical values you 
are shown.) 

10 

5 

-'t -3 -2 -1 0 '1s 
Figure X7.1: Typical JFET /0 vs V&, curve (this is drawn from 2N5485 data) 

2. Now take advantage of the calculation you just made in order to 
design a self-biased source follower to run at /D(quiescent) = 2 rnA. 
Letf3dB"" 10Hz. 
What signal amplitude can this follower reproduce? 

3. Given gm = 5000 11mhos at foss• what is the follower's-

a. attenuation? 

b. Rout? 

4. Design and install a current source to replace Rs. What circuit 
characteristic(s) does this replacement improve? 
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Solution: 

1. Current Source 

The curve suggests we need Vgs of about -2.8V to get 2 rnA to flow. That required value 
of V GS implies an R value: 

Rs = 2.8V I 2 rnA = 1.4kQ 

V+ 

1.4K 

~I 
Figure X7.2: Intersection of 2 rnA and curve==> need back-bias of about 2.8V; here is the 2 rnA JFET current source 

2. Source Follower 

This is just the current source, but output from source rather than drain, and with an input. 
The input is AC-coupled: 

(, = -::----
2.1! f3dB R, 

- 1 
~ TI07o' 
:::: o.o16 )'F 

Figure X7 .3: Self-biased source follower 

Query: what signal amplitude? 

Not very large: since Vout is quiescent at about 2.8V, that sets the amplitude limit: ::;; about 
2.8V. 

3. What attenuation, what Rout? 

We must find gm at the operating point. gm is specified at loss• but the circuit does not run 
there (and no follower can!). Luckily, the relation of gain to operating point is simple. 
Here are the curves, once again (they are approximate; the 2N5485 data sheet shows an / 0 
vs vgs function less perfectly quadratic): 
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-'t -3 -z. -1 0 

g'" r>tA/v (., /'.,~,.,) 
!J / r fr-•nscondu.ctance. 

/ __ 
1 

_ ,.u·,.A/v 

- ~ -3 . -2 - 1 0 lljJ 

Figure X7.4: Given gm and V
1
,, and the curve of / 0 vs V

1
,, we can calculate gm at the operating point 

Here, gm appears to be about 1.5 mAN (a clearer way to say "1,500 Jlmhos"), so 1/gm = 
2/3 kQ: ""0.7K. 

This gives Vout I Vin of about 1.4k/2k: about 2/3. 

Rout= 1/gm parallel R 5: 0.7k parallel 1.4k: 0.45K: 450Q. 

4. Design a current source to replace !is 

We have already done the work: we know what value of Rs will give 2 rnA. We can 
minimize voltage offset <Vout - Vin) by inserting a resistor of value equal to the lower 
R5-this is a trick you meet in Lab 7-3. 

-/SV 

Figure X? .5: Current source replaces R5: now attenuation and offset are small 
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Lab 7: FETs 1: First View 

Reading: 

Problems: 

7-1 FET Characteristics 

zok 

sec. 3.01- 3.10, re FETs generally, followers 
and current sources; 
We will return in a later lab (Lab 11) to the 
use of FETs as switches. For today, 
concentrate on the circuits you will see in this 
lab: follower, current source, and variable 
resistor. Of these, the follower probably is the 
most important. 
embedded problems 

+-15v 

0 o.o1f'.F 

I 

-15V ~ 
D S G 

Figure L7.1: FET test circuit. Plot 10 vs. V05 

Measure loss and Vp ("pinch-off' voltage = VT for a JFET) for a couple of samples of 
2N5485. 

Verify the relation between 10 and Vas shown in the Text's figure 3.15 (semi-log plot). 
Notice the spread of values even in specimens from the same manufacturer's batch. Check 
that your values fall within the quoted maximum range: 

4mA < loss < 10 rnA 
-4V < Vp < --0.5V 

Note Vp for one of the FETs and use this transistor in the current source and follower 
experiments that follow. There it will be useful to know this characteristic for the transistor. 
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7-2 FET Current Sources 
a) Discrete Transistor Current Source 

use small took fot 
+15v 

~ slider-/ 

Figure L7.2: FET current source 

How good a current source is this? Vary the resistance of the 'load,' and watch V05 with a 
DVM as you monitor lour 

What is Vos when the constant current behavior starts to break down? This V05 value 
marks the boundary of the "linear region" and should occur when V0s is near V Gs-V r· Does 
your FET' s "linear region" begin around this value of V DS? 

lineal", 
~idtt I I ------!lzli=-"=...:::3.!-V_ 

linear re3io11 
extends 'ro 

VDSrnt>"" VGs -1.1,-

Vc>s- 1/. = 2V 

v. -v =tv 

Figure L 7.3: Reminder: FET linear versus current-source regions: depends on V DS 

Notice that the circuit you have just built is the first two-terminal current source you have 
seen in these labs (that is, a current source that requires no external bias). Such a device is 
as almost as easy to use as a resistor (why .. . almost?). FET manufacturers, too, have 
noticed how handy a device a 2-terminal current source is, and they sell them. 
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b) Integrated 2-terminal current source 
The 1N5294 is a JFET with source shorted to gate, but packaged in a small package that 

looks just like a diode's. These current sources are sorted by loss; the '5294 passes about 
0.75 rnA. 

First, try the device in the test circuit you used with the 2N5485 just above. Does this 
"diode" perform as well as the circuit you built with the '5485? Would you expect it to? 

Now, to get a feel for how easy it is to design nifty things with this device, try the circuit 
below-which at a glance may look foolish. 

::-IJ! -e-®-r A = ~ = ~ 
o.~Fr ~ ~ ~ 

1N52.94 
Figure L7.4: Application for two-terminal current source: square-wave to-?- circuit 

What waveform out do you expect? Here, incidentally, we are exploiting a fact that 
ordinarily alarms us: a JFET's gate conducts if we forward-bias the gate with respect to 
either source or drain. 

Drive the circuit with a 1kHz square wave of about 5 volts' amplitude. Center the input 
waveform on zero volts, and note whether the output is centered. If it is not, why is it not? 
If it is off-center, what stops it from sailing farther off-center? 

Now gradually lower the input amplitude until you notice distortion in the output 
(curvature, near the points). Why does this occur? (Hint: At the point where you notice 
curvature beginning, note the voltage across the FET: V0 s.) 
7-3 Source Follower 

in 
out 

1M 

Figure L 7.5: Source follower 

a) Simple Follower 

Drive the source follower shown above with a small sine wave at 1kHz. By how much 
does the gain differ from unity. Why? 

From this single observation-the follower's attenuation-you can infer gm: the FET's 
transconductance (at this 10 . ). One way to think of gm's effect is to draw it as an 

qwescent 

equivalent resistance in the source, exactly analogous tore for the bipolar transistor: 
+Vl>D 

Figure L 7.6: Effect of gm shown as series resistance forming voltage divider in a follower 
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Compare the gm that you infer from your follower's attenuation with the gm shown on the 
transistor's data sheet, and with the gm you measured at the start of this lab. Note that gm 
varies with / 0 , and that the data sheet specifies gm under the most favorable condition: VGs 
= OV. Your follower runs with V GS < OV. So, the observed gm will always be lower than 
the data sheet's gm. 

You can do better than to say "lower," if you like. Here is the argument (stated in the 
Text at p. 132): 

Here are the curves for log In versus V GS• and for (linear) In versus V Gs: 

Vr 
(or V,) 

L"J .If:, Ip 

IDSS 

Figure L 7.7: log In versus V 05; (linear) In versus Vas 

The gain curve just shows the slope or derivative of those curves. Since /0 varies 
as the square of V GS• the gain curve looks like a straight line, reaching its 
maximum (the specified value of gm) at foss (where V GS = 0): 

ID 

:J,.. at IDSS 
(i:e., crt VGS :o) 

VT 0 
(o~ V p) VGs-+ 

Figure L7.8: Gain varies linearly with V05 - VT 

So, if you observe the quiescent value of Vs, you know VGS-quiescent (VG rests at ground). 
Having measured Vr at the start of today's lab, you can see where you must be on the 
PET's curve. 

How close is your estimate of gm, so derived, to the value of gm that you observe? 

How does the variation of gm compare with the variation of "gm" that you saw for a 
bipolar transistor, back in the lab where you saw distortion in the common-emitter amplifier 
(exercise 5-2). 
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b) Follower with Current Source Load 

Modify the circuit to include a current source load as shown in the figure below. Confirm 
that this follower performs much better than the simpler circuit. 

t15" v 

2~VS~85" 

in. 

~.7k 

out 
2N5't85 

4.7k 

-15V 

Figure L7.9: Low-Offset source follower with current source load 

Measure the gain with a 1 V, 1kHz signal (the gain had better be very close to 1.0!). 

Attempt to measure the input impedance. If you conclude that ~n is around 10M ohms, 
suspect that you have fallen into a trap! 

Measure the DC offset. What accounts for the non-zero offset? Mismatch of FETs or of 
resistors? What easy circuit changes would let you find out, if you are in doubt? 

c) (Optional:) Matched-PET Follower 

Finally, try the same circuit with a 2N3958 dual FET. The six-lead package is most 
easily inserted into the breadboard as two rows of three (straddling the central median). 

The specified maximum offset for these transistors is 25mV. Is the offset of your circuit 
as low as that? If not, why not? 

2N3958 

lo I' View
Figure L7.10: 2N3958 matched dual FET 
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7-4 FET as Variable Resistor 
When you tested the FET as current source, you found that the circuit failed when Vns 

shrank so far that the device fell into its "linear region." Here you will build a circuit 
intended to operate always within that region: it will "fail" if Vns gets large enough to carry 
the FET into the current source region. 

33ok 

-15v 

1\/\. 
-u;:, 
(<lv) 

1M 

out 

Figure L7.11: FET as voltage-controlled resistor: attenuator circuit 

a) Uncompensated Attenuator 

Drive the circuit above with a small sine wave (around 0.2V) at around 1 kHz. Adjust 
the potentiometer, and notice the results, not only in variable attenuation but also in varying 
amounts of distortion. (To see distortion clearly, drive the circuit with a triangle 
waveform.) Would you predict such distortion, on the basis of the Text's figure 3.30, 
reproduced below? How does the circuit treat a larger input waveform? 

1 
2N5~B't 

\'\-Channel 
JFET 

; 

..,-~ 

o· 

Vc;s =-I. 2v 

0~~==~~~~~ 
o 0.1 0.2 o.3 o.'t o.S 

v2>S, volfs 

Figure L 7.12: FET linear region: a family of curves, at several values of Vas 
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b) Compensated Attenuator 

-i5v 

Figure L7.13: Compensated PET-as-resistor 

Adding 1/2 v05 to the gate signal turns out to straighten those curves a good deal. (See 
Text sec. 3.10, p. 139.) The circuit amendment above performs this addition. Take a look at 
its effect on the shape of Vout as you again drive the circuit with a triangle waveform of 
about 0.2 V amplitude. 

c) Amplitude Modulation 

You may not have been impressed with the preceding circuits, which showed that you 
could use a potentiometer to vary the attenuation of a signal. That you could do without the 
FET's help! The FET is useful, of course, because its resistance can be controlled by a 
voltage, and not necessarily by the adjustment of a potentiometer. 

To put this ability of the FET to work, let a second function generator drive the point that 
you drove with the pot, so as to Jet this second signal vary (or "modulate") the attenuation 
periodically. Let the frequency of modulation be much lower than the signal frequency. 
Try fmodulation of around 50 Hz, and keep the modulation amplitude small: around 0.2 V. For 
a stable display, you may want to trigger the scope on the modulating signal, not on the 
composite output. 

-iS"v 

Figure L7.14: Amplitude-modulation, or multiplication of one signal by another 

d) AM Radio (optional) 

You can have some fun with the preceding circuit by turning it into an AM radio 
transmitter. Drive the point called "Vin•" in the circuit above, with a sine at around 1 MHz 
(we'll call this fcarrier); attach a few inches of wire to the point called "out;" then tune an AM 
radio located across the room to a quiet place on the dial, and adjust fcarrier until you can 
hear the modulating signal (a single tone). (To make the modulating signal more obvious, 
you may want to sweep it, either by hand or with a function generator's sweep mode.) 
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CHAPTERS 4, 5, 6 

FEEDBACK: 
Op amps, oscillators, power supplies: 

Overview 

Figure OVR4.1: Harold Black's notes on the feedforward amplifier conceived as he rode the ferry from Staten Island to work, 
one summer morning in 1927. (Copyright 1977 IEEE. Reprinted, with permission, from Harold S. Black, "Inventing the 

Negative Feedback Amplifier," IEEE Spectrum, Dec. 1977) 

We have been promising you the pleasures of feedback for some time. You probably 
know about the concept even if you haven't yet used it much in electronics. Now, at last, 
here it is. 

Feedback is going to become more than just an item in your bag of tricks; it will be a 
central concept that you find yourself applying repeatedly, and in a variety of contexts, 
some far from operational amplifiers. Already, you have seen feedback in odd corners of 
transistor circuits; you will see it constantly in the next three chapters; then you will see it 
again in a digital setting, when you build an analog-to-digital converter in Lab 17, and then 
a phase-locked-loop in the same lab. It is a powerful idea. 
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Chapter four begins, as Chapter two did, with a simple, idealized view of the new 
devices-this time, 'operational amplifiers:' little high-gain differential amplifiers that make 
it easy to build good feedback circuits. As the chapter continues, we soon feel obliged once 
again to disillusion you-to tell you about the ways that op amps are imperfect. At the 
same time, we continue throughout these four labs to look at additional applications for 
feedback, and we never lose our affection for these circuits. They work magically well. 
The third op amp lab, Lab 10, introduces the novelty of positive feedback: feedback of the 
sort that makes a circuit unstable. Sometimes that is useful, and sometimes it is a nuisance; 
we look at cases of both sorts. Several of the circuits that use positive feedback are 
oscillators, a circuit type treated primarily in Chapter 5 (Active Filters and Oscillators). 

Lab 11 concentrates on PET's, this time used as switches; but this lab includes circuits 
that use feedback, and among them is the only active filter that you will meet in this course. 

Lab 12 returns us to circuits that for the most part rely on negative feedback, but these are 
specialized circuits designed for the narrow but important purpose of providing stable 
power supplies. The Text devotes a chapter to these circuits (Chapter 6: Voltage Regulators 
and Power Circuits); we give them a lab, and hope that you will feel the continuity between 
this use of feedback and the more general cases that you met first in Chapter 4. With Lab 
12 we conclude the analog half of the course, and with the very next lab you will find the 
rules of the game radically changed as you begin to build digital circuits. But we will save 
that story till later. 

A piece of advice (unsolicited): How to get the greatest satisfaction out of the feedback 
circuits you are about to meet: 

Here are two thoughts that may help you to enjoy these circuits: 

• as you work with an op amp circuit, recall the equivalent circuit made without 
feedback, and the difficulties it presented: for example, the transistor follower, both 
bipolar and FET, or the transistor current sources. The op amp versions in 
general will work better, to an extent that should astonish you. 

You have labored through two difficult chapters, 2 and 3, and have learned how to work 
around annoying characteristics of both sorts of transistor. Now you are entitled to enjoy 
the ease of working with op amps and feedback. 
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Here is a picture of you climbing-as you are about to do-out of the dark valleys 
through which you have toiled, up into that sunny region above the clouds where circuit 
performance comes close to the ideal: 

----·---~---- ---

Figure OVR4.2: Righteous and deserving student, about to be rewarded for his travails with discrete transistors: he climbs into 
the sunny alpine meadows where feedback blooms 

Pat yourself on the back, and have fun. 

A second thought: 

• Recall that negative feedback in electronics was not always used; was not always 
obvious-as the Text points out in its opening to Chapter 4, and as Harold Black 
was able to persuade the patent office (Black comes as close as anyone to being the 
inventor of electronic feedback). 

The faded and scribbled-on newspaper that is shown at the start of these notes is meant to 
remind you of this second point-meant to help us feel some of the surprise and pleasure 
that the inventor must have felt as he jotted sketches and a few equations on his morning 
newspaper while riding the Staten Island Ferry to work one summer morning in 1927. A 
facsimile of this newspaper, recording the second of Black's basic inventions in the field, 
appeared in an article Black wrote years later to describe the way he came to conceive his 
invention. Next time you invent something of comparable value, don't forget to jot notes on 
a newspaper, preferably in a picturesque setting-and then keep the paper till you get a 
chance to write your memoirs. 
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Topics: 

• old: 

• new: 

Class 8: Op Amps 1: Idealized View 

earlier examples of feedback 

negative feedback: a notion of wonderful generality 
feedback without op amps: examples you have seen 
feedback with op amps 

• the Golden Rules 
• Applications: Two amplifiers 
• Preconditions: when do the Golden Rules apply? 
• More Applications: improved versions of earlier circuits 

• current source 
• summing circuit 
• follower 
• current-to-voltage converter 

• A generalization: strange things can sit within the feedback loop: 

• sometimes we want the op amp to hide the strange thing; 
• sometimes we want the op amp to generate (strange

thingt1 

Preliminary: Negative Feedback as a general notion 

This is the deepest, most powerful notion in this course. It is so useful that the phrase, at 
least, has passed into ordinary usage-and there it has been blurred. Let's start with some 
examples of such general use-one genuine cartoon (in the sense that it was not cooked up 
to illustrate our point), and three cartoons that we did cook up. Ask yourself whether you 
see feedback at work in the sense relevant to electronics, and if you see feedback, is the 

. . . ? 
sense postuve or negauve. WAY OVT WEST. 

weu., '(ou've- B""" A 
PR<-r-T~ GOOC> Hos<, I GV13"SS. 
HARDWOIZKIN' NOT THE 
FA~R ST Ci(ITT"t< I f.VFIZ 
'OME ACROST, £311/.,. 

0 

Figure NS.l: Feedback: same sense as in electronics? Copyright 1985 Mark Stivers, first published in Suttertown News 
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The two cases below are meant to raise the question, "To which op amp terminal is the 
feedback being applied?" (If you have not yet looked at the Text, that question will not yet 
make sense to you. We assume you know what an op amp is, at this point.) 

I 
I 

I 

y•v 
.:=:[; ) I (.()f'?(>IUntSf 'I 

J~ I ''\ ~~ 

/~ 
I 

Figure N8.2: "Negative Feedback": poor usage: which terminal is getting the feedback? 

The case below comes closer to fitting the electronic sense of negative feedback. In op amp 
terms (not Hollywood's), who's playing what role? 

crane aper-ahw 
(harris on leVer-) 
ca n'i s:ee results 
of his etdions. 

He nee.:ls 
corl'l"c.hon Sljn41~ • • • 

.froM obserVer, 
• who wa-l:c.hes 

n?S"-I+.s, and te Us 
controller ho"' to 
COrl"l'ct them. 

Figure N8.3: "Negative feedback:" a case pretty much like op amp feedback 

In conversation, people usually talk as if "positive feedback" is nice, "negative feedback" is 
nasty. In electronics the truth is usually just the opposite. 

Feedback in electronics 

Generally speaking, negative feedback in electronics is wonderful stuff; positive feedback 
is nasty. Nevertheless the phrase means in electronics fundamentally what it should be used 
to mean in everyday speech. 

Harold Black, the first to apply negative feedback to electronic circuits, described his idea 
this way: 
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Text sec. 4.26, p. 233 

... by building an amplifier whose gain is made deliberately, say 40 decibels 
higher than necessary (10,000-fold excess on energy basis) and then feeding 
the output back to the input in such a way as to throw away the excess gain, 
it has been found possible to effect extraordinary improvement in constancy 
of amplification and freedom from nonlinearity_! 

Open-loop vsfeedback circuits 

N8-3 

Nearly all our circuits, so far, have operated open-loop--with some exceptions noted 
below. You may have gotten used to designing amplifiers to run open-loop (we will cure 
you of that); you would not consider driving a car open loop (we hope), and you probably 
know that it is almost impossible even to speak intelligibly open-loop. 

Examples of Feedback without Op Amps 

We know that feedback is not new to you, not only because you may have a pretty good 
idea of the notion from ordinary usage, but also because you have seen feedback at work in 
parts of some transistor circuits: 

LabS: 
5-2,5-3,5-5 

out 

Figure N8.4: Some examples of feedback in circuits we have built without op amps 

Feedback with Op Amps 
Op amp circuits make the feedback evident, and use a lot of it, so that they perform better 

than our improvised feedback fragments. Op amps have enormous gain (that is, their open
loop gain is enormous: the chip itself, used without feedback, would show huge gain: 
z200,000 at DC, for the LF411, the chip you will use in most of our labs). As Black 
suggests, op amp circuits throw away most of that gain, in order to improve circuit 
performance. 

1. IEEE Spectrum, Dec. 1977 
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The Golden Rules 
Just as we began Chapter 2 with a simple model of transistor behavior, and that model 

remained sufficient to let us analyze and design many circuits, so in this chapter we start 
with a simple, idealized view of the op amp, and usually we will continue to use this view 
even when we meet a more refined model. The golden rules (below) are approximations, 
but good ones : 

Text sec. 4.03, p. 177 

Op amp "Golden Rules" 

1. The output attempts to do whatever is necessary to make the 
voltage difference between the two inputs zero. 

2. The inputs draw no current. 

These simple rules will let you analyze a heap of clever circuits. 

Applications 

Two Amplifiers 
Text sec. 4.04, 4.05: 
p.l78 

/I] 

out 

9-ain = ? 

Figure !118.5: lnve;ting and non-inverting amplifiers 

What are the special virtues of each? 

out 

• What is Rin for inverting amp? (Golden Rule 1 should settle that.) 
• Approximately what is Rin for the non-inverting amp? (Golden Rule 2 should 

settle that.) 
• The inverting amp's inverting terminal (the one marked"-") often is called "virtual 

ground." Do you see why? (Why ground? Why "virtual"?) This point, often 
called by the suggestive name "summing junction," turns out to be useful in several 
important circuits. 
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When do the Golden Rules apply? 
Text sec. 4.08 

Now that we have applied the Golden Rules a couple of times, we are ready to understand 
that the Rules sometimes do not apply: 

• note a preliminary assumption: these rules are useful only for circuits that 
include-

1. Feedback; and 
2. Feedback of the right flavor: negative feedback 

• And note the careful wording of the first rule: "the output attempts .... " This rule is 
like a guarantee written by a cautious (and prudent) lawyer. It warns a careful 
reader that the person designing op amp circuits retains an obligation to use his 
head: apparently there are circuits in which the op amp will be unable to deliver the 
desired result: it will attempt and fail. Let's look at some such cases, to be warned 
early on. 

Try your understanding of the golden rules and their restrictions, by asking yourself 
whether the golden rules apply to the following circuits: 

p.l82, item "2" 

works? Works? works? is +here teeJbad: ? 

Figure 1\'8.6: Do the Golden Rules apply to these circuits? 

And will the output's "attempt..." to hold the voltages at its two inputs equal succeed, in 
these cases? 

p. 182, item "1" 

Figure 1\'8.7: Will the output's "attempt ... " succeed here? 

More Applications: Improved Versions of Earlier Circuits 
Nearly all the op amp circuits that you meet will do what some earlier (open-loop) circuit 

did-but they will do it better. This is true of all the op amp circuits you will see today in 
the lab. Let's consider a few of these: current source, summing circuit, follower, and 
current-to-voltage converter. 
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Current Source 
Text sec. 4.07,fig. 4.11; 
Lab 8-5 

v,;, 
(de, or 
a s-ij"~l) 
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r 

l 

Figure N8.8: Op amp current sources 

The right-hand circuit gives you a chance to marvel at the op amp's ability to make a device 
that's brought within the feedback loop behave as if it were perfect. Here, the op amp will 
hide both the slope of the / 0 vs. Vos curve in the "saturation" region (a slope that reveals 
that the FET is not a perfect current source) and the more radical departure from current
source performance in the "linear" region-a region one must stay out of when using a 
naked FET. Are you beginning to see how the op amp can do this magic? It takes some 
time to get used to these wonders. At first it seems too good to be true. 

Summing Circuit 
Text sec. 4.09, 
p. 185 fig. 4.19; 
Lab8-7 

ik 

paSSIVe 

out ovt 

-acJive 

Figure N8.9: Summing Circuits 

In the lab you will build a variation on this circuit: a potentiometer lets you vary the DC 
offset of the op amp output. 
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Followers 
Text sec. 4.06; 
sec. 4.09,p.186 

open- loof. version 
(no {ee'dback; 
bias not shown) 
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ac+ive. Vl'rsion push- puH <J.cJive 

Figure N8.10: Op amp followers 

How are the op amp versions better than the bare-transistor version? The obvious 
difference is that all the op amp circuits hide the annoying 0.6V diode drop. A subtler 
difference-not obvious, by any means, is the much better output impedance of the op amp 
circuits. How about input impedance? 

Current-to-voltage converter 
Text sec. 4.09, 
p.184 

Phofometer 

I;n 
~ 

IdeaL Current 11efer 

(a +ext problem) 

R 

l R 
(mefer 
movement) 

Figure N8.11: Two applications for I-to-V converter: photometer; "ideal" current meter 

(A Puzzle: if you and I can design an "ideal" current meter so easily, why do our lab 
multimeters not work that way? Are we that much smarter than everyone else?) 
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Strange Things Can be put Into Feedback Loop 
The push-pull follower within the feedback loop begins to illustrate how neatly the op 

amp can take care of and hide the eccentricities of circuit elements-like bipolar followers, 
or diodes. 

Here's the cheerful scheme: 

Somdin!ts this ,·s 
+he ov+p"t. w~ L:ke. 
-the. stran3eness. 
(doj-1, ,,., +J.,e f'jvr-e) 

ou.t (t,J~) 

s 
Sometimes H~t·s is 
-tioe o" ff',t , W€.' re 

+'CI'":J +o h1de -the J~J' 

Figure N8.12: Op Amps can tidy up after strange stuff within the loop 

In the push-pull follower, we treat the "tidied-up" signal as the output; the strange tricks the 
op amp output needs to perform to produce a tidy output do not interest us. In other 
circuits, however, the "strange signal" evoked by the "strange stuff' in the feedback loop 
may be precisely what does interest us. Here are two examples: 

Compare Text sec. 4.14, 
p. 212,fig. 4.35 

out 
Vin 

out 

Figure N8.13: Two cases where we plant strange stuff in loop, to get "strange" and interesting op amp output 

In both of these cases, far from trying to hide "the dog" (of Fig. N8.12, above), we are 
proud of him; so proud that we want to gaze at his image, which appears at the op amp 
output (the image is always dog-1: inverse-dog). 

In today's lab you will be so bold as to put the oscilloscope itself inside one feedback 
loop, with entertaining results: 

Lab8-6 

scofe 

r 
voitase. to irrk nsd!J position ~ t-
(~infensi~) fo vol+a_Je 

Figure N8.14: Scope brought within feedback loop: adjusts location of CRT beam 

You '11 see lots of nifty circuits in this chapter. Soon you may find yourself inventing 
nifty circuits. Op amps give you wonderful powers. (In case you find yourself wanting still 
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more when you have concluded the orgy of cleverness that appears in the Circuit Ideas at 
the end of the Text's Chapter 4, see the books of application notes published by National 
Semiconductor, among others, or the application notes that follow many op amp data sheets, 
including the LF411 's (see Text appendix K for the '411 's data sheet). 
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Two worked examples: 

1. an inverting amplifier 

2. a summing circuit 

1. • (-JOO)Amp 

Problem: Inverting Amplifier 

Design an inverting amplifier with a gain of -100, to be driven by a 
source whose output impedance is high and uncertain: lOOk to 1MQ. 

The inverting amp is easy enough, apart from the impedance issues: 

100R 

Figure XS.l: Inverting amplifier-but postponing the questions that call for some thought: part values 
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Will any pair of resistor values do, in the ratio 100:1? Does the high and uncertain source 
impedance matter, here? 

A plausible-but wrong-first response might be, 'I don't have to worry about source 
impedance, because op amps have giant input impedances: that follows from the second 
golden rule, which says the inputs draw no current.' 

You don't fall for that answer, though, because you can see that the golden rule describes 
how the op amp behaves, whereas what concerns us here is how the op amp circuit behaves. 
In this case, its input impedance is not the same as that of the op amp: the circuit input 
impedance is much lower. It is just R 1: 

1M 

Figure X8.2: Rin of inverting amp: as low as R 1 

And here's a plausible-but wrong-solution: just make R 1 much bigger than Rsource: 

make it, say, 10MQ. That's a good thought, but it implies that the feedback resistor should 
be lOOOM-1 GQ, and that is excessive, for reasons we will make sense of only when we 
admit that op amps are not quite as good as their idealized model. 
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Easy solution to the impedance problem: a follower 

A follower solves the problem neatly: 

1M 

Figure X8.3: Follower buffers the input of the inverting amp 

X8-2 

Now we can choose modest resistor values for the inverting amp, like those shown above. 
At first you may feel uncomfortable tacking in extra op amps to solve circuit problems. We 
hope you will soon get over this discomfort. A slogan worth remembering will recur in this 
chapter: op amps are cheap. They come 2 and even 4 to a package. One more op amp is no 
big deal, and often is the best way to refine a circuit. 

2. 'Arithmetic' 

Problem: Summing Circuit 

Design a circuit that forms the following sum of the input voltages A, B:, 
and C. 

Vout = A + 2B -3C 
Again let's make the source impedances high and uncertain: lOOk to 
lMQ, just to drum home our earlier point. 

And here's a solution. It is so similar to the preceding problem that it does not call for 
much explanation. Let's do the problem with just comments in "balloons": 

A 

c 

Figure X8.4: Summing circuit II 

The function of this circuit-Vout = A + 2B -3C-recalls why op amps were given that 
name: they can do mathematical operations-and other, fancier ones such as multiplication 
and division as well, with the help of log amps. 



Reading: 
Problems: 

8-1 Open-Loop Test Circuit 

Lab 8: Op Amps I 

Chapter 4:4.01-4.09, pp. 175-187. 

Problems in text. 
Bad Circuits B,D,F,G,I,K,L,M (none of 
these requires any deep understanding of 
op amps). 
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Before we ask you to build your first op amp circuit we should remind you of two points: 

first, how the integrated circuit ("IC") package goes into the breadboard. (The 
package style is called "DIP:" "dual in-line package".) 

oooooooo 
oiJn naco 
D I] J:C f>?uSf 

smJJie 
-fhe bread boar-d 

~ 
0 u 

D 0 0 0 0 0 0 0 
00000000 

D 0 0 0 0 0 D 0 

Figure LS.l: How the IC op amp goes into t\Ie breadboard: it straddles the trench 

second, a point that may seem to go without saying, but sometimes needs a 
mention: the op amp always needs power, applied at two pins; nearly always that 
means ±15V, in this course. We remind you of this because circuit diagrams 
ordinarily omit the power connections. On the other hand, many op amp circuits 
make no direct connection between the chip and ground. Don't let that rattle you; 
the circuit always includes a ground-in the important sense: common reference 
called zero volts. 

+15" 

ovt 

-15" 
1 z. 

3" 
p·m numkrin'\ 
(rn•ni-l:l!P c.nse} 

Figure L8.2: Open-loop test circuit 

Astound yourself by watching the output voltage as you slowly twiddle the pot, trying to 
apply 0 volts. Is the behavior consistent with the 411 specification that claims "Gain 
(typical)= 200V/mV?" 
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8-2 Inverting Amplifier 
10k 

Figure L8.3: Inverting amplifier 

Construct the inverting amplifier drawn above. Drive the amplifier with a 1kHz sine 
wave. What is the gain? What is the maximum output swing? How about linearity (try a 
triangle wave)? Try sine waves of different frequencies. Note that at some fairly high 
frequency the amplifier ceases to work well: sine in does not produce sine out. (We will 
postpone until next time measuring the slew rate that imposes this limit; we are still on our 
honeymoon with the op amp: it is still ideal: "Yes, sweetheart, your slewing is flawless"). 

Now drive the circuit with a sine wave at 1kHz again. Measure the input impedance of 
this amplifier circuit by adding lk in series with the input. 

Measure the output impedance (or try to measure it, anyway). Note that no blocking 
capacitor is needed (why?). You should expect to fail, here: you probably can do no more 
than confirm that Zout is very low. Do not mistake the effect of the op amp's limited current 
output for high Zout· You will have to keep the signal quite small here, to avoid running into 
this current limit. The following curves say this graphically. 

Vouf(fllax) -volts 

1 

Source 
5 

-3o -2o -1o Ho <2o <30 

-5 oufpvf cvrrent -,.,A 

Figure L8.4: Effects of limit on op amp output current (LF411) 

These curves say, in compact form, that the current is limited to ±25 rnA over an output 
voltage range of ±lOY, and you'll get less current if you push the output to swing close to 
either rail ("rail" is jargon for "the supply voltages"). 
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Note to zealots: a student who tries very hard to measure Rout• by loading the op amp with 
a very small resistor-say, 10-may see a bizarre result: the output amplitude grows under 
load. If you see that, you are seeing the effect of sneaky positive feedback, applied through 
a voltage divider formed by the lQ load and the small resistance of the ground line: 

(' 
lnfut StgnaL 
is d.f?lied 
ac,-,ss +Aese 
fwo foints 

\ 

Figure L8.5: Sneaky positive feedback can boost the signal when small R10ad lets substantial currents flow in the ground lines 

Don't look for this exotic effect; it's not worth your time. This note is addressed only to the 
poor student confronted with this strange behavior. 

8-3 Non-inverting Amplifier 

out 

Figure L8.6: Non-inverting amplifier 

Wire up the non-inverting amplifier shown above. What is the voltage gain? (It is not 
the same as for the inverting amp you just built.) 

Try to measure the circuit's input impedance, at 1kHz, by putting a lMeg resistor in 
series with the input. Here, watch out for two difficulties: 

Once again, beware the finding, "10M ohms". 
R;n is so huge that C;n dominates. You can calculate what Cin must be, from the 
observed value of f3dB· Again make sure that your result is not corrupted by the 
scope probe's impedance (this time, its capacitance). 

Does this configuration maintain the low output impedance you measured for the 
inverting amplifier? (You can answer this question without doing the experiment, if you 
redraw the circuit to reveal that, for the purpose of this measurement, it is the same circuit 
as the "inverting amp"!) 
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8-4 Follower 

Figure L8.7: Op amp follower 

Build the follower shown above, using a 411. Check out its performance. In particular, 
measure (if possible) Zin and Zout (but don't wear yourself out: you already know the 
answer, if you recognize the follower as a special case of one of the circuits you built a few 
minutes ago). 

8-5 Current Source 
+15 

15k 

lk 

10k "Load" 

Figure L8.8: Current source 

Try the op-amp current source shown above. What should the current be? Vary the load 
pot and watch the current, using a digital multimeter. 

Note that this current source, although far more precise and stable than our simple 
transistor current source, has the disadvantage of requiring a "floating" load (neither side 
connected to ground); in addition, it has significant speed limitations, leading to problems in 
a situation where either the output current or load impedance varies at microsecond speeds. 

The circuit below begins to solve the first of these two problems: this circuit sources a 
current into a load connected to ground. 

2.?k 

!2k 

+JSv 

'-170 

10roA 
(DMM) 

Figure L8.9: Current source for load returned to ground 

G D 
s 
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Watch the variation in /out as you vary Rload· To understand why the current source fails 
when it does, it may help to use a second meter to watch the voltage across the transistor: 
VcEorVos· 

Try using a bipolar transistor: a 2N3906. Then replace that transistor with a VPOl 
MOSFET (its pinout is equivalent, so you can plug it in exactly where you removed the 
2N3906). 

Should the circuit perform better with FET or with a bipolar transistor? Do you find a 
difference that confirms your prediction? Does the PET's linear region restrict the range of 
circuit performance as it did for the simple FET current source you built in Lab 7? With 
either kind of transistor the current source is so good that you will have to strain to see a 
difference between FET and bipolar versions. Note that you have no hope of seeing this 
difference if you try to use a YOM to measure the current; use a DVM. 

8-6 Current to Voltage Converter 

a) Photodiode 

c~ 
LPT-100 
(no coiJ~cfor 

con nee. tion) 

Figure L8.10: Photodiode photometer circuit 

6: 

LPT-loo 

Use an LPT100 phototransistor as a photodiode in the circuit shown above (you may, 
instead, use an FPT100 or FPT110: pinouts are the same as for the LPTlOO; specs are very 
similar). Look at the output signal (if the de level is more than 10 volts, reduce the 
feedback resistor to 1Meg). 

If you see fuzz on the output-{)scillations-put a small capacitor in parallel with the 
feedback resistor: 100 pF should be big enough for either this or the phototransistor 
circuit below, even with its smaller Rfeedback· Why does this capacitor douse the oscillation? 
(Hint: what does it do to the circuit's gain at high frequencies?) 

What is the average de output level, and what is the percentage "modulation?" (The latter 
will be relatively large if the laboratory has fluorescent lights.) What input photocurrent 
does the output level correspond to? Try covering the phototransistor with your hand. 
Look at the "summing junction" (point X) with the scope, as Vout varies. What should you 
see? 

Make sure you understand how this circuit is preferable to a simpler "current-to-voltage 
converter," a resistor, used thus: 

l<3ht~ n 
n 110M 

LPT-100 .,. 

Figure L8.11: A less good photodiode circuit 
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b) Phototransistor 

Lab 8: Op Amps I 

+15" 

(no ba.se 
conr'lectJon) 

Figure L8.12: Phototransistor photometer circuit 

LS- ~ 

Now connect the LPTlOO as a phototransistor, as shown just above (the base is to be lef: 
open, as shown). What is the average input photocurrent now? What about the percenta;t 
modulation? Look again at the summing junction. 

c) Applying the Photometer Circuit (optional) 

If you put the phototransistor at the end of a cable connected to your circuit, you can let 
the transistor look at an image of itself (so to speak) on the scope screen. (A BNC with 
grabbers on both ends is convenient; note that in this circuit neither terminal is to be 
grounded, so do not use one of the breadboard's fixed BNC connectors.) The image 
appears to be shy: it doesn't like to be looked at by the transistor. Notice that this scheme 
brings the scope within a feedback loop. 

Figure L8.13: Photosensor sees its own image 

You can make entertaining use of this curious behavior if you cut out a shadow mask, 
using heavy paper, and arrange things so that the CRT beam just peeps over the edge of the 
mask. In this way you can generate arbitrary waveforms. 

If you try this, keep the "amplitude" of your cut-out waveform down to an inch or so. 
Have fun: this will be your last chance, for a while, to generate really silly waveforms: say, 
Diamond Head, or Volkswagen, or Matterhorn. You will be able to do such a trick 
again-at least in principle--once you have a working computer, which can store arbitrary 
patterns in memory in digital form. Practical arbitrary-waveform generators use this digital 
method. 
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8-7 Summing Amplifier 

-15 v ----A.II/v- + 15v 
1ok 

'oFFSET" 

Lab 8: Op Amps I 

10k 

Figure L8.14: Summing circuit: DC offset added to signal 
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The circuit in the figure above sums a DC level with the input signal. Thus it lets you add 
a DC offset to a signal. (Could you devise other op amp circuits to do the same task?) 

8-8 Push-pull Buffer 

-15" 
Figure L8.15: Amplifier with push-pull buffer 

1k 

Build the circuit shown above. Drive it with a sine wave of 100Hz-500Hz. Look at the 
output of the op-amp, and then at the output of the push-pull stage (make sure you have at 
least a few volts of output, and that the function generator is set for no de offset). You 
should see classic crossover distortion. 

Listen to this waveform on the breadboard speaker. But before you drive the speaker you 
should determine the maximum safe amplitude, given the following power ratings: 

transistors: 350 mW 
speaker: 250 mW. 

Now reconnect the right side of the feedback resistor to the push-pull output (as in Text 
figure 4.22), and once again look at the push-pull output. The crossover distortion should 
be eliminated now. If that is so, what should the signal at the output of the op-amp look 
like? Take a look. (Doesn't the op amp seem to be clever!) 

Listen to this improved waveform: does it sound smoother than the earlier waveform? 
Why did the crossover distortion sound buzzy-like a higher frequency mixed with the 
sine? 

If you increase signal frequency, you will discover the limitations of this remedy, as of all 
op amp techniques: you will find a glitch beginning to reappear at the circuit output. 
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Class 9: Op Amps II: Departures from Ideal 

Topics: 

• old: 

• new: 

passive versions of circuits now built with op amps: integrator, 
differentiator, rectifier 

three more important circuits (applications): 

+ integrator 
+ differentiator 
+ rectifier 

op amp departures from ideal 

+ offset voltage 
+ bias current 

offset current 
+ frequency limitations: open-loop gain; slew rate 
+ output current limit 

Today we end our honeymoon with the op amp: we admit it is not ideal. But we continue 
to admire it: we look at more applications, and as we do, we continue to rely on our first, 
simplest view of op amp circuits, the view summarized in the Golden Rules. 

After u::ing the Golden Rules to make sense of these circuits, we begin to qualify those 
rules, recognizing, for example, that op amp inputs draw a little current. Let's start with 
three important new applications; then we'll move to the gloomier topic of op amp 
imperfections. 
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1. Three More Applications: Integrator, Differentiator, Rectifier 

Integrator 

To appreciate how very good an op amp integrator can be, we should recall the defects of 
the simple RC "integrator" you met in Chapter 1. 

Passive RC integrator 
Text sec.l.l5 
Lab 2-3 

lin flJlJ l )in Jl_1 
out~ ... bvt(ou~ 

Figure N9.1: RC "integrator:" integrates, sort-of, if you feed it the right frequency 

To make the RC behave like an integrator, we had to make sure that 
Text sec.l.15,p. 27 

This kept us on the nearly-straight section of the curving exponential-charging curve, when 
we put a square wave in. The circuit failed to the extent that Vout moved away from ground. 
But the output had to move away from ground, in order to give an output signal. 

Op amp version 
Text sec. 4.19; 
Lab 9-2 

The op amp integrator solves the problem elegantly, by letting us tie the cap's charging 
point to 0 volts, while allowing us to get a signal out. "Virtual ground" lets us have it both 
ways. 

c 

10ut 

Figure N9.2: Op amp integrator: virtual ground is just what we needed 

The op amp integrator is so good that one needs to prevent its output from sailing off to 
saturation (that is, to one of the supplies) as it integrates error signals: over time, a tiny lack 
of symmetry in the input waveform will accumulate; so will tiny op amp errors. 
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So, practical op amp integrators include some scheme to prevent the cap's charging to 
saturation: 

a) One remedy: a large resistor in parallel with the cap (this leaks off a small current, 
undoing the effect of a small error current in); 

Textp. 223 

10M 

f.M-F 

took took 

Figure N9.3: Integrator saved from saturation by resistor parallel Cfoodbac< 

Effects of the resistor 

Evidently, the resistor compromises performance of the integrator. But we can figure out 
by how much. There are several alternative ways to describe its effects: 

The resistor limits DC gain 
In the circuit above, where Rin = lOOk and Rfeedback = 10M, 
the DC gain is -100. So a DC input error of ±1 mV -> 
output error of ±lOOm V. The integrator still works fine, 
apart from this error. 

The resistor allows a predictable DC leakage 
Suppose we apply a DC input of 1 V for a while; when the 
output reaches -1 V, the error current is 1/100 the input or 
"signal" current (because Rreedback = lOO•Rin)· This error 
grows if vout grows relative to Yin· 

The resistor does no appreciable harm above some low frequency 
As fin rises from zero, Xc shrinks, and at some low 
frequency Xc becomes less than R. Soon R is utterly 
insignificant. 
Xc = R, as you know, at f = 1/2nRC. For the components 
shown in the circuit above-Rreedback=lOM, C=l~F-that 
frequency is about O.OlHz! 
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A detail: how the resistor T works 
Here's a diagram to persuade you that the clever T resistor arrangement does indeed 

make the lOOk resistor look about lOOX as large: 

Figure N9.4: How the T arrangement enlarges apparent R values 

Neat? The scheme is useful because the lower Rrhevenin of the T feedback network has two 
good effects: 

it generates smaller /bias errors than the use of giant resistors would (we'll discuss 
this problem, below); 

it drives stray capacitance at the op amp input better (avoiding unintentional low
pass effects in the feedback); this is not important here, but is in a circuit where no 
capacitor sits parallel to a big feedback resistor. 

b) Another remedy: a switch in parallel with the cap (this has to be closed briefly, from 
time to time). 

o- n reset 
-IO_J L 

n-c.Aarme( 
JFET 

Figure N9.5: Integrator saved from saturation by discharge switch 

The switch produces a more perfect integrator, but is more of a nuisance to drive. 
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Differentia/or 
Text sec. 4.20; 
Lah 9-3 
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Again the contrast with a passive differentiator helps one appreciate the op amp version: 

IN~ 

Figure N9.6: RC "differentiator:'' differentiates, sort-of, if RC kept very small 

To make it work, we must make sure that 
Text sec. 1.14, p.25. 

dV outfdt « dVin/dt 

Again the op amp version exploits virtual ground to remove that restriction: 

Text sec. 4.20, 
pp. 114-25, 
figs. 4.51, 4.52 

Figure N9.7: Op amp differentiator: simple (idealized); practical 

This op amp differentiator is a little disappointing, however: it must be compromised in 
order to work at all. A practical differentiator, shown on the right in the figure above, turns 

into an integrator (of all things!) at some high frequency. 
This scheme is necessary to prevent oscillations (we will look more closely at this topic a 
class or two hence). 

Active Rectifier 
Text sec. 4.10, 
pp. 187-88, figs. 4.25, 4.26; 
Lah 9-4 

The simple passive rectifier of Chapter 1 was blind to inputs < about 0.6 v, and put an 
offset of that amount between input and output. The op amp version hides the diode drop: 

IN 
(\ 1\ 
Cl' 

v 
lrt 

,x.. .0\:.:!: i7V 
QUf.,:J ~ ~· 

' ' 

Figure N9.8: Passive and active rectifiers 
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The circuit shown saturates for one input condition. That is poor: produces an output glitch 
(caused by delay) as it comes up out of saturation. In the lab you will build an improved 
active rectifier that cleverly stays out of saturation (how does it work?) 

Fig. 4.27; 
Lab 9-5 

1ok 

~ -+~ere's <<I ways teed. l>ac.l; 
so, neve~ sa+ura+es 

Figure N9.9: Improved active rectifier 

2. Op Amp Departures from Ideal 
Let's admit it: op amps aren't quite as good as we have been telling you: the Golden 

Rules exaggerate a bit: 

• the inputs do draw (or squirt) a little current; 
• the inputs are not held at precisely equal voltages. 

Here are three circuits that always deliver a saturated output after a short time. They 
would not if op amps and all components were ideal: 

Figure N9.10: Three circuits sure to saturate. why? 

Op Amp Errors 
Text sec. 4.11, 4.12; 
Lab 9-1 

We will treat, in turn, the following op amp errors: 

• voltage offset: 
• bias current 

offset current 
• frequency limitations: open-loop gain roll-off; slew rate 
• output current limit. 

Offset Voltage 
Text sec, 4.11,p.192; 
4.12,p.194 

Offset Voltage: Eos 
"The difference in input voltage necessary to bring the output to 

zero ... " (Text, p. 192) 
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This spec describes the amp's delusion that it is seeing a voltage difference between its 
inputs when it is not. The amp makes this mistake because of imperfect matching between 
the two sides of its differential input stage. 

LF'111A LF411 
lJni+s ~Mbol 'Parameter Cond,·hons rni" f +~p I JY\o~ "'"~ 1 t~p 1 rnr,:x 

Vos Inpvt offset Voi+C'I~e %= 1okn.,T..,= 2":fc 1 0.3 1 o.s 1 o.s 12.0 mV 

Figure N9.11: 411 Spec: Vofb<~ 

You can compensate for this mismatch by deliberately pulling more current out of one 
side of the input stage than out of the other, to balance things again. This correction is 
called 'trimming offset,' and you will do it in today's lab. But this trimming is a nuisance, 

and the balancing does not last: time and temperature-change throw voffset off again. 

(-l 
ill. 

The better remedies are, instead-

• 
• 

use a good op amp, with low voffset; 

design the circuit to work well with the voffset of the amp you have chosen . 

I 2k 
I 
I 
I • I 
! ~· I .. - --- - -- -\:'., .. ··.,-- - ---- - ~ 

Figure N9.12: Inside the 411: schematics: simplified, and detailed 
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Bias Current 
Text sec. 4.11, p.190; 
.<t'C. 4.J2,p.J94 

S:Jrt~bol 

Ios 

Is 

1'2-ram£t~r 

Input offset eu~t 

Input Bias Cur~nt 

Bias Current: I bias 

Cond1t10ns 
L.F~tfA LF't11 

m1n ""--P rna1<. t'Y'lin f4p 
T. = 2'5°<: 25 100 25 

Vs=±ISV T-.=7o•c 2 
T.,.=1'?.s•c. 25 
T,=:as•c 50 200 50 

Vs=.:!:I5V T~=?o•c 4 
T7 = 12.s•c so 

Figure N9.13: 411 Specs: /bios and /offset 

roa-x Units 

100 pA 

2 nA 
25 nA 

200 pA 
4 nA 
50 nA 

/bias is a DC current flowing in or out at the input terminals (it is defined 
as the average of the currents at the two terminals). 
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For an amplifier with bipolar transistors at the input stage, /bias is base current; for a PET
input op amp like the 411, /bias is a leakage current: it is tiny, therefore, but also grows 
rapidly with temperature: 

,......_ 
<1: 

10 

~ 
-1-' 

~ 
LF't11 

v 

"' -~ 0.1 
..£) 

o.oo1 L--'--..L---'---'----L-...J_--' 
-Sd'c de ~if'c 

ferr>?erafure. 

Figure N9.14: 411 bias current: tiny, but grows fast witb temperature 

The bias current flows through the resistive path feeding each input; it can, therefore, 
generate an input error voltage, which may be amplified highly to generate an appreciable 
output error: the Lab exercise uses a high-gain DC amplifier for just that purpose: 

out 

Figure N9.15: Lab circuit: uses high-gain de amp to make errors measurable 

But notice that the lab notes ask you to use a 741 op amp, not a 411, to make the errors 
substantial. That requirement suggests that often you will not need to worry about the 
effects of bias current: true, but you should know how to judge whether or not to worry. 

To minimize the effects of bias current, match the resistances of the paths that feed the 
two op amp inputs. Here are examples of circuits that do or do not balance paths: 
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crummv Sa/ufton 
:; 

N9-9 

Once you have balanced these resistive paths, /bias no longer causes output errors. But a 
difference between currents at the inputs still does. That difference is called-

Offset Current 
Text sec. 4.11, p. 190; 
sec. 4.12,p.195 

Offset Current: loffset 

The difference between the bias currents flowing at the two inputs. 

For the 411 the los specification is about 1/2 /bias; for the bipolar op amps los is smaller 
relative to !bias· But recall how tiny !bias is for the 411 and other PET-input devices. 

As noted just above, even when the resistances seen by the two inputs are balanced, an 
error will occur because of this difference in currents. Remedy? Use resistances of 
moderate value. (<a few lO's of Megohms; recall the argument for the clever T resistor 
trick noted above.) 

Note, by the way, that even if bias current were zero, still you would need to provide a DC 
connection to each op amp input, to define the voltage there; otherwise stray capacitance 
gradually would charge with leakage currents (in the PC board, if nowhere else). So, these 
two circuits are bad: 

Figure N9.17: One must provide a DC connection to each op amp input 
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Measuring and correcting effects ofVoffset and !bias• in lab exercise 9-1 
The lab notes suggest that you go through this process in a particular sequence. Make 

sure you understand why you are asked to proceed as stated there: 
You start with a high-gain amp (xlOOO) that will show large output errors for small input 

errors. At the outset, the effects of Voffset and /bias are commingled. You cannot tell, looking 
at the output, what the effect of either error is, taken by itself. Their effects may even tend 
to cancel. 

1ok 

out 

----'\.1\1\r--' L at: tlr.st (as here) 

output s haws e~ec.+; 
of s•veral e rf'"f"S, Sumflle..l -

esreccail'f Ib, Vos 

Figure N9.18: Lab 9-1's high-gain DC amp, once more 

The procedure suggested goes this way: 

• arrange things so that the effects of /bias are negligible. (How?) 

Measure the output error; infer the input error, and thus V08 . 

Trim V os to a minimum. 

• arrange things so that /bias causes an input error. 

measure the output error so caused, and infer the input error, and thus /bias· 

Alter the circuit so as to minimize the error caused by /bias 

• Infer los from the remaining output error. 

Make sense? 

AC Amplifier: An elegant way to minimize effects of l.hias• ~os and los 
Text sec. 4.05, 
p. 179,fig. 4.7; 
Lab 10-1 

If you need to amplify AC signals only, you can make the output errors caused by V0 s, 
/bias and los negligible in a clever way: just cut the DC gain to unity: 

lh 
lBk 

n>v3hly, ~•in ~~ down 3tlP, 
&>hen J(<- ~ 1?1 

Figure N9.19: AC amplifier: neatly makes effects of small errors at input small at output 

What's its iJdB? If one ignores the "1" in the gain expression, output amplitude is down 
3dB when the denominator in the gain expression is -./2(R1). But that happens when Xc == 
R1, and that happens, as you well know, atiJdB = 1 I (27tR1C). 
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This is the same notion you used to choose the emitter-bypassing capacitor, back in 
Chapter 2: 

Text sec. 2-13, p.85 

gain Is down 3d 8 
t.Jhen Xc. "' re 

Figure N9.20: Gain is down 3d8 when denominator (series impedance of Rand C) is up to Rv2: true for bypassed-emitter 
amp, and for op-amp AC amp 

Slew Rate & Roll-off of Gain 
Text sec. 4.11, pp. 191-92; 
sec. 4.12, p. 193 

These effects turn out to be caused, deliberately, by a gain-killing capacitor planted 
within the op amp. We will talk about this compensation device next time, when we 
consider op amp stability. For the moment, we will note that the op amp's gain falls off at 
-6dB/octave (as if the output had been passed through a simple RC low-pass: in effect, it 
has been!); so the chip's very high gain, necessary to make feedback fruitful, evaporates 
steadily with increasing frequency-and is gone at a few MHz (about 4 MHz for the 411). 

S'j""bol lleraroekr 

AvoL Lar3e-S13nal 
vDI+a3 e 31.ln 

Cond.,ho"s LF411 

!'1\ln be 
Vs = .±15V 
Vo :.t IDV 25 2oo 
.''L"lk fA =Z>"G 
over te"'J>era+vrt. 15 2oo 

f\'\~J(. 
Vn'•ts 

vj ... v 

V/rnV 

100 

LF~11 

20 

o~~~~~--~~~ 

1 10 too 1k 1ok look 1M 1oM 

!r~z uency, Hz 

Figure N9.21: 411 gain roll-off: spec and curves 

These specifications define an upper limit on the usefulness of all op amp circuits; that 
limit explains why not every circuit should be built with op amps, wonderful though the 
effects of feedback are. 
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Output Current Limit 
Text sec. 4.1l,p.191; 
sec. 4.12,p.l94 
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This is a self-protection trick inserted into the output stage, to protect the small transistors 
there from the heating that otherwise would result when some clumsy user overloaded the 
amp. You saw a curve like this one in the first op amp lab: 

""2S <l..._ 

" :::!::20 
~ 

I 15 

"' .. 
~ 10 

~ 
~ 5 

I..F't11 

OL-~LL~~~~~~ 

too..a.. tk.n. 1okn. 
1oad resd:on<e 
(!"3 scale) 

30 

&:25 

:£:2o 
~ 
I 
~ 15 
>< 

"' .t 10 ..., 
1s 

V IOvt - IIJ.,.ifeJ 
(2.5~11) 

l.F't71 

soo tic. 
load IT!Ststance, ..{1. 

(iinttu· scole) 

Figure N9.22: Output current limit: output clips under load, despite very low R.,., 
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Ch.4: Worked Examples: Integrators; Imperfect op amps 

Two worked examples: 

1. Integrator design 

2. Calculating effect on integrator of op amp errors 

1. Integrator Design: 

Problem: Integrator 

Design an op amp integrator that will ramp at + 1 V /ms given a + 1 V DC 
input. Include protection against drift to saturation, and let the input 
impedance be ~ 1 OMQ. 

Solution 

Let's start with a sketch, postponing the choice of part values. The sign of the output 
ramp, and the high required input impedance require a couple of extra op amps; but we 
don't mind: remember?: op amps are cheap. 

CI ~c urr's R r111 

Figure X9.1: Integrator: skeleton circuit 

1<:....._ CANCELS 

INVE7UION 

The resistor in the feedback path will limit the DC gain, keeping the op amp output from 
sailing away to saturation. 

A subtle point: why not balance paths for I bias 

We seem to be violating our own design rules by failing to provide a resistor to ground on 
the non-inverting side of the integrator. Here's the argument that says it turns out better not 
to do such balancing in this context: 

• we would use a low-bias-current op amp in an integrator; probably we would use 
an op amp with FET input and the pA currents that are usual for this type. This 
kind of op amp's los will be only about a factor of two better (lower) than its /bias· 

• why not take that factor of two, though? Because a side effect of the largeR on the 
non-inverting terminal is increased vulnerability to noise there. In the present case, 
we would use lOOk at that point, whereas now the non-inverting terminal is driven 
by a good low impedance (ground!). 

Now for part values: we want DC gain of around 100, so we don't want R1 huge: make it, 
say, lOOk; then Rreedback can be about 10M. 
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Given R1, we can solve for the required C using our usual description of a capacitor's 
behavior,!_ .=. ~ dV!dt. I is the current that flows when the 1 V input is applied; dV /dt was 
given us as a design goaL We can solve for C: 

10M 

c = r_.-
,..-,~h 

r= ~ 
7<., 

LET 7?1 = 100K 

THEN I= o.OlmA @ V,III=1V 

~ C= o.o1 .... A 
JrJ'3Vfs = 0.01,..uF 

Figure X9.2: Integrator with part values specified 

2. Op Amp Errors: effects on an integrator 
An integrator will show the effects of even small DC errors, over time. In the next 

example we will try to calculate the size of those output errors. 

Problem: Effect on integrator of op amp errors 

What output drift rate would you see in the circuit below, assuming that 
you use each of the listed op amps. The circuit input is grounded. 

Figure X9.3: Integrator: what drift rates? Proposed remedy: resistor "T' feedback network 

Op amp type 
741C 

OP-07A 
LF411 

Vos 
6mV 

25J.l.V 
2mV 

I bias 

500nA 
2nA 
0.2nA 

What happens if we add the indicated resistor network parallel to the 
feedback capacitor? 
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Solution: 

The offset voltage, V0 s, causes the op amp to pull its inverting terminal (by means of the 
feedback network, of course) not exactly to ground, but to a voltage Vas away from ground 
(we cannot predict the sign of this error). That error causes current to flow in the resistor; 
that current can't go into the op amp, so it flows into the capacitor. 

The bias current flows into (or out of) the op amp's inverting terminal. This produces a 
drop across the input resistor, which must be canceled by an equal value of current flowing 
through the integrating capacitor (that is, it produces an output voltage ramp). 

Worst case, these two currents flowing in the capacitor simply add. So, we get the 
following results: 

Op amp type V os Ibias I<- V05 Sum of I's dv/dt 

741C 

OP-07A 

LF411 

6mV 

25J1V 
2mV 

500nA 

2nA 
0.2nA 

6nA 

25pA 

2nA 

= 500nA 

=2nA 
2.2nA 

50V/s 
(50mV/ms) 

0.2 V/s 
0.2 V/s 

Figure X9.4: Output errors for a particular integrator made with each of three op amps 

Question: "What happens if we add the indicated resistor network parallel to the feedback 
capacitor?" 

Answer: 

The Resistor network ... 
Text sec. 4.19, 
fig. 4.49, p. 223 

The network looks like about lOOMQ: one part in 100 of Vout reaches point 'X;' so, the 
current flowing through the leftmost resistor is about 1/100 what it would be if that resistor 
alone (1M) were in the feedback path. In other words, if we apply Ohm's Law -R(apparent) 

= Vout-op-amp I 1- we find that the network behaves like a resistor of about lOOM (101M, if 
you care) . 

.. Its Effect 

The '1 OOMQ' resistor gives the circuit a DC gain of -100. So, instead of sailing off to 
saturation, the op amp output will begin to drift at about the rate determined in the earlier 
section of this problem-and then will slow and finally level off at -lOOx(input error 
voltage). 

The input error voltage is the sum of V os and I bias flowing in the resistance it "sees." 
What is that? It's the 1M input resistor parallel the other path, which looks like 1M+ 10K 
"' 1M. Parallel, the two look like 0.5MQ: 

verror(in) =(/bias X RTh-bias) +Vas 
This input error (of undetermined sign) gets amplified by -100. Here are the specific results 
for the three op amps. 

Op amp type Yos I bias V <-Ibias Sum Output Error 
(Ibiasx0.5MQ) 

741C 6mV 500nA 0.25V = --0.25V +25V (saturation) 

OP-07A 25J1V 2nA lmV = lmV ±lOOmV 

LF411 2mV 0.2nA O.lmV 2.1mV =±200mV 
Figure X9.5: Output error (DC) for integrator with feedback resistance added 
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And here is a sketch of what the output voltage error would look like if we started with no 
charge on the cap: disaster for the '7 41, but tolerable results for both of the better op amps: 

Figure X9.6: Feedback resistor limits integrator's output drift: effect quantified 
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Lab 9: Op Amps II 

Reading: 
Problems: 

Chapter 4.10-4.22, pp. 187-229. 

Problems in text. 
Additional Exercises 1-4. 
Bad Circuits A,C,H. 

This lab introduces you to the sordid truth about op amps: they're not as good as we said 
they were last time! Sorry. But after making you confront op amp imperfections in the first 
exercise (9-1) we return to the cheerier task of looking at more op amp 
applications-where, once again, we treat the devices as ideal. On the principle that a 
person should eat his spinach before the mashed potatoes (or is it the other way round?) 
let's start by looking at the way that op amps depart from the ideal model. 

9-1 Op-amp Limitations 

a. Slew Rate 

Figure L9.1: Slew rate measuring circuit. (The series resistor prevents damage if the input is 
driven beyond the supply voltages) 

Begin by measuring slew rate and its effects, with the circuit above. We ask you to do 
this in two stages: 

1) Square wave input 
Drive the input with a square wave, in the neighborhood of 1kHz, and look at the output 

with a scope. Measure the slew rate by observing the slope of the transitions. 

Suggestions: 

Find a straight central section; avoid the regions near 
"saturation"-near the limits of output swing; 

Full slew rate is achieved only for strong "overdrive:" a large 
difference signal seen at the input of the amplifier; 

The rates for slewing up and down may differ. 

See what happens as the input amplitude is varied. 

2) Sine input 

Switch to a sine wave, and measure the frequency at which the output amplitude begins 
to drop, for an input level of a few volts. Is this result with the slew rate that you measured 
in part 1), just above? 
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Now go back and make the same pair of measurements (slew rate, and sine at which its 
effect appears) with an older op amp: a 741. The 741 claims a "typical" slew rate of 
0.5V/J.l.s; the 411 claims 15V/J.l.s. How do these values compare with your measurements? 

b. Offset Voltage 

Figure L9.2: Offset measuring circuit 

Now construct the x1000 non-inverting amplifier shown above. Measure the offset 
voltage, using the amplifier itself to amplify the input offset to measurable levels. 

Note: use a 7 41, not a 411, for the remainder of this exercise (9-1 ). The 411 is too good 
for this exercise: its bias current is so tiny that you would not see appreciable errors 
attributable to !bias· (You might reasonably infer that you can forget about !bias• simply by 
choosing a good op amp. Often you can. This exercise means to prepare you for the 
unusual case in which !bias does produce troublesome errors.) 

1) Measure effects of V offset 

The trick here, where you are to look for the effect of offset voltage, is to arrange things 
so that you can measure that effect alone, eliminating effects of bias current. To do this, 
you need to think what to do with the "in" terminal so as to make the effects of !bias 

negligible. The 741 's typical !bias is 0.08).l.A (80 nA). 
Compare your measured offset voltage with specs: Vos = 2mV(typ), 6mV(max). 

2) Minimizs the effects of V orr~,: offset~ 

t lok 
-15V 

Figure L9.3: 741 offset trimming network 

Trim the offset voltage to zero, using the recommended network (figure above). 

c. Bias Current 
Now remove the connection from "in" to ground that you should have used in part (B) 

(either a short or a IOOQ. resistor). Now the input again is connected to ground only through 
a IOK resistor. Explain how this input resistor allows you to measure !bias· Then compare 
your measurement with specs: !bias= 0.08).l.A(typ), 0.5).l.A(max). 
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d. Offset Current 

Alter the circuit in such a way that both op-amp input terminals see lOk driving 
resistance, yet the overall voltage gain of the circuit is unchanged. This requires some 
thought. 

Hints: 

You will need to add one resistor somewhere; 

That resistor should carry the bias current that is flowing to the 
inverting terminal. 

The goal is to let the junction of the two feedback resistors sit at 
ground while the inverting terminal is allowed to sit below 
ground, at a voltage equal to that of the non-inverting terminal.) 

Once you have done this, the effects of bias current are canceled, and only the effect of 
"offset current" (the difference between bias currents at the two op-amp input terminals) 
remains as an error. Calculate los from the residual DC level at the output; compare with 
specs: 10 s = 0.02!1A(typ), 0.2!1A(max). 

Note: In the remainder of this lab except 9-4, and in all other op amp exercises, use an 
LF411 op amp, not the 741. In 9-4, where we ask you to use a single-supply type, use the 
'358. You will not need the 741 again. 

9-2 Integrator 

Figure L9.4: Integrator 

Construct the active integrator shown above. Try driving it with a 1kHz square wave. 

This circuit is sensitive to small DC offsets of the input waveform (its gain at DC is 100); if 
the output appears to go into saturation near the 15 volt supplies, you may have to adj11st the 
fu:1ction generator's OFFSET control. From the component values, predict the peak-to
peak triangle wave amplitude at the output that should result from a 2V(pp), 500Hz square 
wave input. Then try it. 

What is the function of the 1 OMeg resistor? What would happen if you were to remove 

it? Try it. Now have some fun playing around with the function generator's DC offset
the circuit will help you gain a real gut feeling for the meaning of an integral! 
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9-3 Differentiator 

Figure L9.5: Differentiator 

The circuit above is an active differentiator. Try driving it with a 1kHz triangle wave. 
The differentiator is most impressive when it surprises you. It may surprise you if you 

apply it to a sine from the function generator: you might expect a clean cosine. In fact, 
some generators (notably the Krohn-Hite generators that we prefer in our lab) will show you 
a differentiated waveform that reveals the purported sine to be a splicing of more-or-less 
straight-line segments. This strange shape reflects the curious way the sine is generated: it 
is a triangle wave with its point whittled off by a ladder of four or five diodes. The diodes 
cut in at successively higher voltages, rounding it more and more as the triangle approaches 
its peak: 

7-rianj le 1n 

~-N~~-----------------------------~ 

Figure L9.6: Sketch of standard function-generator technique for generating sine from triangle 

You may even be able to count the diodes revealed by the output of the differentiator. 

A note on stability: 

Here we are obliged to mention the difficult topic of stability, a matter treated more fully 
in a later lab (Lab 10: op amps III). Differentiators are inherently unstable, because a true 
differentiator would have an overall 6dB/octave rising response; as explained in the text 
section 4.20, this would violate the stability criterion for feedback amplifiers. To 
circumvent this problem, it is traditional to include a series resistor at the input, and a 
parallel capacitor across the feedback resistor, converting the differentiator to an integrator 
at high frequencies. That is disappointing-and you may notice the effect of this network: 
it is most evident as a deviation of phase shift, at some frequencies, from the 90° that you 
would expect. Incidentally, a faster op amp (one with higher fT) would perform better: the 
switch-over to integrator must be made, but the faster op amp allows one to set that 
switchover point at a higher frequency. 

9-4 AC amplifier: microphone amplifier 

A. Single-supply Op Amp 

In this exercise you will meet a "single-supply" op amp, used here to allow you to run 
it from the +5V supply that later will power your computer. This op amp, the 358 dual (also 
available as a "quad"- the 324) can operate like any other op-amp, with V+ = + 15V, V_ = 
-15V; however, it can also be operated with V_ = GND, since the input operating common-
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mode range includes V_, and the output can swing all the way to V_. Our application here 
does not take advantage of the single-supply op amp's hallmark: its ability to work right 
down to its negative supply (ground), incidentally. Often that is the primary reason to use a 
single-supply device. 

NOTE: build this circuit on a private single breadboard strip of your own, 
so that you can save the circuit for later use: it will feed your computer. 
This is the first of three such circuits that you will build; you can put them 
each on a single strip, or you can build them all on a larger board. 

Here the 358 is applied to amplify the output of a microphone-a signal of less than 20 
mV-so as to generate output swings of a few volts. The "AC amplifier" configuration, you 
will notice, is convenient here: it passes the input bias voltage to the output, without 
amplification (gain= 1 at DC). 

+Sv +Sv 

2 

3 

4 

358 

Figure L9.7: Single-supply microphone amplifier 

The microphone is an "electret" type (the sound sensor is capacitive: sound pressure varies 
the spacing between two plates, thus capacitance; charge is held nearly constant, so V 
changes with sound pressure, according to Q = CV); it includes a FET buffer within the 
package. The FET's varying output current is converted to an output voltage by the 2.2k 
pullup resistor. So, the output impedance of the microphone is just the value of the pull-up 
resistor: 2.2k. 

If you are troubled by oscillations on the amp output, try isolating the power supply of the 
microphone, thus: 

+S"v 

Figure L9.8: Quieting power supply to microphone 
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You may find, after your best efforts, that your amplifier still picks up pulses of a few tens of 
millivolts, at 120Hz. The pulses look like this: 

clc; sec. .J ~8MS 
I< ,, 

Figure L9.9: Ground noise on PB503 breadboard: caused by current pulses recharging filter capacitor 

Probably you will have to live with these, unless you want to go get an external power 
supply (the adjustable supply you used in Lab 1 will do fine, here). These pulses show the 
voltage developed in the ground lines when the power supply filter capacitor is recharged by 
the peaks of the rectifier output. They shouldn't be there, but they are hard to get rid of. 
They appear because of a poor job of defining ground in the PB503 circuit, and you can't 
remedy that defect without rewiring the innards of the PB503. 

9-5 Active Rectifier 

11'1914 

.._---~>--- out 

Figure L9.10: Active half-wave rectifier 

Construct the active rectifier shown above. Note that the output of the circuit is not taken at 
the output of the op-amp. Try it with relatively slow sine waves (100Hz, say). Look 
closely at the output: What causes the "glitch"? Look at the op-amp output - explain. 
What happens at higher input frequencies? 

9-6 Improved Active Rectifier 
lok 

Figure L9.11: Better active half-wave rectifier 

Try the clever circuit shown above. The glitch should be much diminished. Explain the 
improved performance. (You may want to look at the op amp output, to see the contrast 
with the earlier case.) 
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9-7 Active Clamp 

Lab 9: Op Amps II 

+15 

1N914 

Ln. -•vv•v----e------.--- out 
3.3k 

Figure L9.12: Active clamp 

L9-7 

Try the op-amp clamp circuit shown above. (Note again that the circuit's output is not 
taken from the op-amp output; what significance does that have in terms of output 
impedance?). Drive it with sine waves at 1kHz, and observe the output. What happens at 
higher frequencies? Why? 

Reverse the diode. What should happen? 
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CHAPTER 4 (continued) & CHAPTER 5 

Class 10: Positive Feedback, Good and Bad: 
Comparators, oscillators, and unstable circuits; 

a quantitative view of the effects of negative feedback 

Topics: 

• effects of feedback: toward a quantitative view 

feedback: generalized model 

generalizing the effect of feedback (quantitative account) 

• positive feedback: 

comparator: fast diff amp with versatile output stage 

hysteresis ("Schmitt trigger") 

+ why hysteresis? 

+ how much hysteresis? 

+ how choose component values for given hysteresis? 
contrasted with aiming for exact threshold voltages 

two circuits using positive and negative feedback: 

+ rc "relaxation oscillator"-easily built from schmitt trigger 

+ negative impedance converter (nic) 

more oscillators, good and bad: 

+ good oscillators 

• square wave: the classic 555 

• sine wave: wien bridge 

+ nasty oscillators: positive feedback that sneaks up on you 

• op amp circuits: 

why they may oscillate: funny things in the loop 

remedies: how to prevent oscillation: 'frequency 
compensation' 

• oscillations without op amps: follower 

why it oscillates 

remedies 
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A. Effects of Feedback: toward a quantitative view 

We will leave to a couple of worked examples the task of confirming that Rin• Rout• among 
other circuit characteristics, are improved by the factor 1 + AB (A and B are defined below). 
For the moment, let's settle for an intuitively-appealing sketch of the way feedback does this 
magic. 

Here is the Text's generalized model of feedback: 
Text sec. 4.26, 
pp. 233, 234, 
figs. 4.66, 4.68 

Figure NIO.l: General feedback model 

1 baffl,;,q v 
(e><cesst've 
sen~rali+~) 

It is easier to understand if we redraw the B block to show a fraction of V out fed back, as in 
the usual case. 

Text fig. 4.69 

Then 

'B" dJv1dff'r 

frad10n f'e.d 
bac.k: B= ~ 

Rt +R2. 

Figure N10.2: Feedback model redrawn 

"B" = fraction fed back (a characteristic of the circuit, not the chip) 
"A"= open-loop gain (a characteristic of the chip). 

These notions are enough to let us speak quantitatively of circuit characteristics that until 
now we could only call "big" or "small:" Zin, Zout• constancy of gain. For now, we will stop 
short of confirming the exact expressions for those characteristics (we will leave that task to 
a couple of worked examples). Here, we will try to show roughly how feedback improves 
input and output impedances. 
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Try Rin or Rout for the non-inverting amp: 
Text sec. 4.25, 
p. 234 

boofs+rap / L-----__. 
ef+ed: 

t::,.V_ ne<~rlj "Q«al to l.V+ 

=:> /::,.V across 'R1·n ~·~ ve"J St"'all 

:? t'nj ~::,.r,·" 
•) W'"::J lar:Je r; ~ 

op- O.rr'[' res fOnds 
wd"h Za ':Je t,V hert. .. 

='> lorje cur,-ent (b.I) 
at output 

=)s""all r;,"t: 

Figure N10.3: Qualitative argument: how feedback improves Rin and Rout: non-inverting amp 

Rin is bootstrapped: wiggle Vin and the inverting terminal wiggles 
about the same way; so, t1 V across the input is very small, and so, 
therefore, is til. Rin is improved by the factor (1 + AB), it turns out. 
But this argument becomes silly when R;n is 1012, as it is for the 411: 
then cin dominates the input impedance; most of cin is not 
bootstrapped, unfortunately. 

The argument for Rout is similar: wiggle the output (apply a little 
t1 V); the amp responds by moving point X a lot, putting a large 
voltage across its Rout-chip· But this sources or sinks a large current, 
Mout. No doubt you can see the nice result that follows-magically
low effective Rout· 

A quantitative example 

Try Rin or Rout for the non-inverting amp, assuming the following characteristics (here we 
anticipate one of the worked examples, which treats this problem in greater detail): 

Assumed op amp specifications: 

• Op amp's hardware Rin (differential, between its two inputs)= 1 MQ 

• Op amp's hardware Rout= 100Q 

• the amplifier has gain of 10 
• the chip's open-loop gain is 1000 at 1 kHz 

Rin• Rout each is improved by the factor (1 + AB). (This argument is strongly reminiscent of 
the argument that a bipolar transistor improves what's on the far side of it by the factor (1 + 
p) this is what we called the 'rose-colored lens' effect.) 

How large is the factor (1 + AB)? A is given as 1000; B is the fraction of the output 
swing that is fed back: here, it is divided by 10 (that is, B = 0.1; this is, of course, how the 
amp achieves its gain of 10). So, the product AB is 100. Therefore the hardware 
characteristics of the chip are improved by that factor: 

Rin is boosted from 1 MQ to 1 OOMQ. 
Rout is reduced from 100Q to 1Q. 

(Notice that this effect is not quite the same as the effect of the transistor's P: P operated on 
whatever impedance was on the far side of the transistor; the op amp's (1 + AB) operates on 
what's inside the feedback loop: one does not look through the op amp.) 
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Important Points: 

The virtues of feedback circuit depend on both A and B: a circuit works best where AB, the 
"loop gain," is large. "A" falls with frequency; "B" is greatest in a follower, least when you 
look for very high gain (electronic justice, once again!). 

l
....... / r- foot 'fll<"n AOL 
SMaller. ~ f~//s {,.!B lxfa~ '::1 jaln, I' 

/ ~a.rt>p; 
f~~ .. ,,oJs - ------ -·------ -----

/cryPr l~>Cp 
5am 118 

' ~ fo!lo~r: 
/ Aa. • OJ8 ---- __ J_ .. -------------

'B : 1 

Figure N10.4: "A" Falls with frequency; "B" is highest for follower 

B. Positive Feedback 

1. Benign Positive Feedback 
Text sec. 4.23 

less :Jod per-fomance. 

Positive feedback helps make a circuit decisive: forces the output quickly to extremes 
(whereas negative feedback moderates the circuit's performance; tends to prevent 
saturation, tends to stabilize a circuit, keeping the output away from extremes). In a 
comparator, such decisiveness is just what's needed. 

What's a comparator? Just a high-gain differential amplifier: such an amplifier 
"compares" its two inputs, though we have not described its performance that way till now. 
What's distinctive about the comparator is not so much the device as the l.Hie to which it is 
put; an op amp can serve as a comparator, as suggested in the figure below. But-as you 
will confirm in the lab--it makes a second-rate comparator: it is slow. A chip built to do 
nothing else-a special-purpose comparator like the '311-works about 100 • faster. Here 
are the two of these devices (not yet practical circuits, as we will argue below): 

Lab 10-3 
+15 

+15 
lk 

.,. -15 

Figure NlO.S: Two second-rate comparators: op amp (slow); 311 without feedback (indecisive) 

The defects of these comparators appear if you imagine feeding them a noisy input like 
the one drawn below. Assume that you want the comparator to switch on the big, slow 
waveform's "zero-crossing." You do not want to switch on the little wiggles. (To make this 
hypothesis plausible, you might imagine that the slow waveform is 60 Hz, and our goal is to 
let a computer tell time by counting the 60Hz zero-crossings.) Try drawing the 
comparators' response: 
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;, x: sec. 4.24, p. 231: 
. ":pare figs. 4.61, 
.: ~-'· 4.64 

Class 10: Positive Feedback 

{

+0.1v----- ~ 
0 0 = 

-o.tv _;?: :u: ;=~ >==\ 

1
+15v ------

411 
Cop-amp) o ------

output -iSv------

\~\ :_ sw,nqs fo \· ~Z ~ransit,on 
' ' :!:13:;f, arprox . '\J' 

'' ' ' I 
'I' I ' o 

:'' I : I 

l:ime 

(com~l~t.a-) r-~15: -____ , 
output 1-lSv ____ __ 

Figure N10.6: A comparator without feedback will misbehave; the op amp is slow, as well 

Evidently, our clock is going to run fast! 
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In fact, the problem is even worse than it appears: even if the input waveform is smooth, 
its gentle slope alone can make the comparator output chatter indecisively as the input 
inches across threshold (zero volts, in the cases above). You can solve this problem, 
however. 

A Good Comparator Circuit always Uses Positive Feedback 

It turns out to be easy to make a comparator circuit ignore such small wiggles. Just feed 
back a small fraction of the output swing-but in a "positive" sense, so that the output 
swing tends to confirm the comparator's tentative decision. Such positive feedback makes 
the comparator decisive: it pats itself on the back, saying (in the manner of many of us 
humans), "Whatever you've decided to do must be right." The act of switching tends to 
reinforce the decision to switch. 

Here you can confirm that the comparator circuit with hysteresis does not respond to the 
wiggles on the input. 

Text sec. 4.24; 
_·,cmpare p. 231 
. :.ss. 4.63, 4.64 

+15 

+15" 

~.7k 

311 
(cornp.) 
output 

311 
(comr,.) 

threshold 

___.- no fransihon 

\ 

I> vntii cross 

: :~ --:_--_-~-. ---"--.,\ "fper fhmh. 

{

+o.1v -----

0 ----

-o.1v -----

Figure N10.7: A good comparator in action 
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How Much Hysteresis? 

If hysteresis makes the comparator decisive, how much should you design in? As much 
as possible? What do you lose as you enlarge hysteresis? How should you choose a value 
for hysteresis, then? 

(( }I t.-
)'ID/3~ 1f-

Figure N10.8: Relation between noise and hysteresis 

Two Circuits that use Both Positive and Negative Feedback 

RC Relaxation Oscillator 

Here's the lab circuit, which you recognize as just the Schmitt trigger (which was given 
unusually large hysteresis), feeding itself: 

Lab 10-4; 
Text sec. 5.13; 
compare p. 285 fig. 5.29 

100k +15 

4.7k 

Figure N10.9: RC relaxation oscillator 

What are the thresholds? How long to move Vcap between the thresholds? 

"'-v_~? 
Figure NlO.lO: V cap travels between the two thresholds: Linear Approximation 

A straight-line approximation here is pretty good: the endpoint currents are larger and 
smaller, respectively, than the current when Vcap is at ground, so let's use that current: about 
15V, then, across the feedback resistor (again, let's neglect the pullup resistor; we can 
afford a 5% error on one swing). 
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Negative Impedance Converter ( "NIC") 
it'>:r sec. 5.03. 
:' ~ 66 fig. 5.4 

1ok 

Figure N10.11: NIC 
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Two possible configurations; use one or other depending on Rsource· (See below.) 
Combines negative and positive feedback. Is it, then a Golden Rule circuit? Yes, if we 

arrange things right (we want it to be such a circuit, because we need to avoid saturated 
(clipped) outputs). 

The circuit is stable only if negative feedback predominates. What constraint on Rsource 
does that imply? 

Wrinkles: effects of "watching" the circuit: 

STABLE 

Figure NlO.U: NIC: A Marginally-stable circuit 

• "watch" only circuit output, and circuit is stable; 
• "watch" only non-inverting input, and circuit oscillates; 

• "watch" both op amp inputs, and circuit is stable again. 

Why? 

This marginal stability foreshadows troubles you will examine more closely in the lab, 
and which we discuss below under the heading 'nasty oscillators.' 
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Oscillators, good and bad 

Let's look at two more nice oscillators, then switch to the intriguing topic of nasties. You 

will build oscillators of both sorts in lab, today. 

A. Good Oscillators 

Sometimes, of course, we want to build oscillators. Let's conclude with this cheerier 

topic. Here are some oscillators you will build in the lab: 

1. 555 RC oscillator/timer 
Text sec. 5.14 

The 555 is nearly as common as the 741 once was: there are small books of 555 
application notes. In the lab you will use an improved version: a 7555 (made of 
CMOS-remember these? MOSFET's-for low power; and capable of running faster than 

the original, bipolar device). 

Because the 5551 contains a flip-flop, a device you have not met, it's a little hard to 
explain. We'll try, though: here is a diagram of its insides, and then an informal 
explanation. 

Text sec. 5.14, 
fig. 5.32, p. 287; 
Lab 10-3 

d,scha e. 

7\------, 

555: innards ... 

:rv maJ i<tr>o~ #,ese. 
9a~s. N'or,al/4 , +h"4 
S1mp0 pass "u't" ar(d 
"clear" sfraiqht #,,..,<fCIJ.,, 
from co""pari:fors -1o fti('- flo!' 

. •. and wired 
as oscillator: 

Figure Nl0.13: 555 oscillator: what's within the chip, and the usual way to wire it as an oscillator 

As in the relaxation oscillator you built last time, the capacitor voltage here moves between 

two thresholds, always frustrated. Lab 10's RC oscillator uses a Schmitt trigger to provide 

these two thresholds. The 555 uses a simpler scheme: two comparators, comparing V cap 

against 1/3 and 2/3 of Vee· 

l. We 'II call the ch1p 333 even though the version you w1ll use IS CMOS and likes to be called 7333; for the purpose of th1s 
explanation, the version of the 555 does not matter at all. 
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3.vcc. --------------
.3 -rt . 

t Vee. - - - - - -

Figure N10.14: A very informal explanation of the 555's operation 

The two comparators act like unfriendly guards at the 1/3 V co 2/3 V cc borders: when the 
capacitor voltage crosses either frontier, it finds itself sent back toward the other-like some 
sad, stateless refugee. The border guards send the capacitor voltage up and down by turning 
on or off a discharge transistor: this transistor pulls charge out of the cap, or-when 
off-allows the capacitor to charge up toward the positive supply. 

You can vary the 555's waveform at the capacitor by replacing the resistors RA and R8 
(see Fig. N10.13) with other elements: a current source or two, or-for R8 , but not 
R A -even a piece of wire. Can you picture the waveforms that result, for the several 
possible configurations? 

2. Sine Oscillator: Wien Bridge 
Text sec. 5.17; 
Lab 10-4 

This oscillator-the only sine generator you will build in this course-is clever, and fun 
to analyze. 

>-~.,___- output 

f = 2;RC 

Figure Nl0.15: Wien bridge sine oscillator 

Why does it put out a sine, rather than the usual square wave or triangle (those are the 
waveforms that are easy to generate)? Somehow it avoids clipping (that prevents the usual 
square output); somehow it selects a particular frequency rather than a large set of 
frequencies (that delivers a pretty good sine, rather than a complex waveform). 
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Here, for the purpose of analysis, we have broken the circuit into two fragments, each 
showing the feedback in one of the two senses: positive or negative: 

Positive Feedback 

The positive feedback network is frequency-selective, and at the most favored frequency 
passes a maximum of l/3 of the output swing back to the + input; it treats all other 
frequencies-above and below its favored frequency-less kindly. Here's a sketch: 

.13 -----
~ 
v.m 

/ f 
prefernd 

frerency 

Figure N10.16: Wien bridge positive feedback: fraction of output fed back 

At that favored frequency, the phase shift also goes to zero. The preferred frequency-the 
one at which the oscillator will run-turns out to be l/(27tRC). 

Negative Feedback 

Figure N10.17: Self-adjusting gain: negative feedback of wien bridge, redrawn 

The negative feedback-here redrawn to look more familiar-adjusts the gain, exploiting 
the lamp's current-dependent resistance (the lamp is rated at 14mA@ lOv). Convince 
yourself that the sense in which the lamp's resistance varies tends to stabilize gain at the 
necessary value. (What value of gain is necessary, to sustain oscillations without clipping?) 

The detail of performance that is hardest to explain is the so-called "rubbery behavior" 
that results if one touches the non-inverting terminal while the circuit is running: 

·~nvdore" 

Figure N10.18: "Rubbery behavior" of Wien bridge oscillator, when one touches the non-inverting terminal: at two sweep rates 

To explain this, recall that the negative feedback network is stable, but only marginally so 
because the lamp (with its long time-constant of response) looks like an extreme low-pass 
filter. So, this circuit resembles the circuits discussed below that raise stability questions: 
op amps driving heavy capacitive loads. It would not be satisfactory as a general purpose 
amplifier, because it is so jumpy: it overshoots and then takes a long time to stabilize again. 
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It is satisfactory in this application, because normally we do not disturb it: we do not poke it 
with a finger. 

B. Nasty Oscillators 
:, x: sec. 4.33, generally 

Sometimes negative feedback turns positive. That's bad: makes a stable circuit unstable. 

The circuit below looks, at a glance, as if it is getting negative feedback, and therefore 
should be stable: 

But whether this feedback is 
negative-making the circuit stable; or 
positive-making the output oscillate or 
saturate--depends, evidently enough, on 
what is in the box "X". 

Figure N10.19: Stable? circuit 

Here are two examples of seemingly-negative feedback that is positive in fact: odd things 
in the box "X" that could cause trouble. One of the examples is silly, the other realistic: 

J(·xt sec. 7.07; 
LdJ 10-8 

I I 
Figure N10.20: Negative feedback can turn positive: crude & subtle examples 

Because of this possibility, all feedback circuits oblige one to take precautions to preserve 
stability. You may have seen some of your circuits oscillate-sometimes in cases where no 
positive feedback was apparent, and even (as in the case of the follower) where none of the 
conditions for oscillation seemed to be fulfilled. 

What are those conditions, by the way? What is required for sustained oscillation? 

gain: 

positive feedback: 

otherwise the disturbance has to die away (as it does, say, in the LC 
resonant circuit hit with a square wave); more specifically, as the 
disturbance appears at the output and is fed back to the input, then 
appears again at the output, it must not get smaller: net gain around 
the loop must be at least one. 

the circuit must talk to itself, patting itself on the back, saying, 
'Good. Do more of what you're doing.' 
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Let's try these notions on some unstable op amp circuits. 

An Unstable Amplifier Circuit 

Why does this circuit oscillate? 

d,ffe~nti.! +or 
{vmtd ble.) 

Figure N10.21: Unstable amplifier: more and less obvious cases 

Answer: Phase Shifts Add: 
Compare Text sec. 4.34, p. 244 

Compare p. 244, 
figs. 4.81, 4.83 

~~ f'-'> 

Figure N10.22: Any low-pass filter: attenuation; phase shift 

Figure N10.23: Cascaded low-pass filters 

If you put several low-passes in cascade, you will find 18(J'J phase shift at some 

frequency. 

At that frequency, negative feedback is transformed into positive. Trouble! 

Nl0-12 

But-you may protest-you don't plan to put cascaded low-pass filters into a feedback 

loop, so this isn't a problem you need worry about. 

You would be wrong if you said that. Look inside an op amp, and you discover that the 

several stages constitute low-pass filters in cascade, so that the op amp itself produces just 

such dangerous phase-shifting. 
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Here's a plot of phase shifts in an op amp: 
Text sec. 4.34, 
p. 244,fig. 4.81 

.. 
" "' 
X' 
c 

';< 
= 

gain 

-Z7o" t 
~ 

-180° ~ 

"' 

Figure N10.24: Phase shifts in an op amp ("uncompensated'') 

Remedy: Limit "Loop Gain" 
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We are stuck with these low-pass filters. At some frequency negative feedback will turn 
positive. What can we do to keep the circuit stable? 

We can rig things so that gain is not sufficient, at the deadly 1800-shift frequency, to 
sustain an oscillation. That means, make sure gain is less than one at that frequency, for a 
disturbance trying to travel around the loop. 

This limiting of gain is called "frequency compensation." 

Here's a diagram meant to summarize the problem, and requirements for stability. 

t 
&Vcut '------.j ~~~~ 

~eAs bad 
fnu:tion 13 

Figure N10.25: Conditions for stability versus oscillation 

Assume there is noise around at all frequencies, disturbing the circuit input. That 
disturbance--call it !l V in-is amplified to produce a !l Vout A times as big; then some or all 
of that !l V out is fed back to the input (a fraction "B" is fed back, so AB(!l Vin) is fed back. If 
that is as big as the original /lVin, or bigger, the circuit oscillates. 

This view suggests remedies: 

limit the size of A; 

limit the size of B. 

Or limit both. In any case, we need to limit the product, AB. Let's look separately 
at the ways to limit&, then B. 
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Shrinking A is called "frequency compensation": 
Text sec. 4.34, 
pp. 245-46, 
figs. 4.84, 4.86 

1oc.b3!-----....,,------.... 

80</B 

2oJB 

foo mud j3t'n, 
still, ai 
{tt~ u ~nty w_lwr 
;hase sfu'/f ts 
dan'}tr"ur 

, .. qain s a(e/!i 
below "'"t'fr 
wl>ere (ihm
shi(t t's 
dtJJ?~erous 

NlO- 14 

Figure N10.26: Remedy: circuit can be kept stable by killing open loop gain at dangerous (high-) frequencies 

Shrinking B you achieve simply by designing a circuit with large voltage gain: one of 
these circuits is much more likely to oscillate than the other: 

Figure Nl0.27: Remedy: circuit can be made less ready to oscillate by attenuating an output disturbance in feeding it back 

In summary: limit loop gain, AB 

For stability, you need to hold the loop gain below unity at frequencies where dangerous 
phase shifts appear. This was a point we tried to illustrate with figure N10.25. Figure 
N10.4 showed the way loop gain varies with both A (A falls off with frequency) and with B 
(B depends on the circuit configuration). Where we first looked at the way loop gain 
depends on both circuit configuration and chip properties, we were concerned with the 
quantity AB because it describes the ability of the op amp to improve circuit performance. 
Here we are again concerned with the quantity AB, but for a reason quite different: AB also 
describes the ability of the circuit to cause trouble: to oscillate. A high loop gain, AB, gives 
good circuit performance, and it can cause stability problems. As usual, if you reach far for 
one thing you want, you may give up something else that you need. Of the two concerns, 
stability is the more urgent. We must hold AB safely low. We will settle for the circuit 
performance that results. 
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Oscillations without Op Amps 
Feedback need not be explicit, as it is in op amp circuits, in order to cause trouble. Below 

is a circuit that oscillates because of very sp.eaky effects. Wouldn't you nominate this 
circuit as least-likely to oscillate? Isn't it a sure-fire dud? 

L<.Jb 10-7 
+IS 

+5 

out 

Figure N10.28: Follower: a circuit that "can't oscillate"-but does 

Here's the argument that 'proves' that this circuit cannot oscillate: 

Gain is less than one; 
There is no feedback at all, so no positive feedback. 

QED: it cannot oscillate. But it does. Why? 
Redrawing the circuit to show stray capacitance and inductance reveals what must be 

going on: 
Text sec. 5.18, 
.·igs. 5.43, 5.46,pp. 298,300 

Figure N10.29: The follower e){{Josed!: Showing stray C and L; and showing two similar oscillators, one accidental, one 
purposeful 

Redrawn, this circuit is revealed to be nearly identical to a current source whose oscillations 
are explained in the Text. There, the circuit is likened to a purposeful oscillator called a 
'Hartley LC oscillator.' Both of these circuits are shown above. 
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Class 10 Appendix: Op Amp Frequency Compensation 
Appendix (for enthusiasts): Op Amp Frequency Compensation 

These notes take a look at the way frequency compensation is implemented in an op amp. 
This is information you can do without, if you like: you can build stable circuits without 
knowing how the IC designers do their job. But if you're curious, here goes: 

Frequency Compensation: a particular example: LF411 op amp 

The huge gain of the 411 at DC (200,000) begins to fall at -6dB/octave around 20Hz! 
At 4 MHz, gain is down to 1. This seems strange, doesn't it? Even stranger-if you hadn't 
heard this before, anyway-the op amp's designers deliberately rolled off the gain. At first 
glance this looks silly: why build a high-gain amp, then ruin its gain? (Compare a similar 
riddle, challenging feedback itself: 'Why build a high-gain amp, and then throw away most 
of its gain with feedback?') You now know the answer: the open-loop gain, A, must be 
rolled off so as to prevent oscillations at the deadly frequency where before phase shifts add 
to 180°. Here's how the rolling -off is done. 

The frequency-compensation is achieved with the help of Miller effect: a capacitor is 
planted between collector and base in the gain stage. Usually we think of Miller effect as a 
troublesome enemy; here the effect is harnessed to do some useful work: it magnifies a 
small capacitance, and cleverly imposes a uniformf3dB on a set of op amps that may show 
varying gain: 

Text sec. 4.34, 
p. 246,fig. 4.85 

c 
~ 4od!S 
<> ... and 1~ down 

2odB 5 1v1 at zJ,.nHz 

odB1k--1~0--1o~o--1~k--1~ok--1o~~--~1M~~1oM 

fr·r~J c ll'l.) 

(-J 
in 

Figure NlOA.l: Gain roll-off, and Miller capacitor that achieves this result: generic op amp, and simplified schematic of 411 
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One can redraw the op amp to show that Miller capacitor as the feedback cap in an 
integrator (of all things!). 

(+) 
ih 

(-; 
in 

" 
I ' ' 
I ' 
I 

I 
v-' 

Figure NIOA.2: Op amp redrawn to include integrator 

Suddenly one discovers what sets the op amp's slew rate, as well asf3dB for its gain. (You 
will find the 411 circuit explicated in a separate section called 'Op amp innards'.) The 
view that the op amp behaves like an integrator also warns us that the device imposes a 90° 
phase shift; that information helps us to see how even one additional low-pass in the 
feedback loop could get us to the deadly 180° shift. 
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Ch. 4: Worked Examples: Effects of Feedback 

Two examples: 

1. Rout for non-inverting amplifier and for inverting amplifier; 

2. Rin for inverting amplifier used as current-to-voltage converter, or "transresistance" 
amplifier. 

1. Non-inverting amplifier 
Text sec. 4.34; 
;;·.lin plot: fig. 4.84, p. 245 

Solution: 

Problem: Rin' &ut: non-inverting amplifier 

Find Rin and Rout for a non-inverting amplifier made with the op amp 
described below. Find the values at DC and at 10kHz. 

Do not start by assuming improvement by the factor ( 1 + AB ); justify 
this result, for the case of Rout· 

Here are relevant op amp specs: 

• Op amp's hardware Rin (differential, between its two inputs) = 1 
MQ 

• Op amp's hardware Rout = 1 OOQ 
• the amplifier has gain of 10 
• the chip's open-loop gain curve (typical) looks like this: 

100,000 

c 101000 

·;, 
()) 1ooo 

j(L_ 
1oo 

1o 

10 100 1k 1ok 1ook. 1M 

:fr~zuen"J, Hz 

Figure XIOA.l: Open-loop gain, A, for this op amp 

Class Notes 10 make out the rough qualitative argument. Here, we will hurry on to the 
quantitative problem. 
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Routfor the non-inverting amplifier 

3 • ••• and ampliftes f/,is 
by if s (Ia 'Je) olen-loaf 
9ain, A > fo -AB.& tr hPre 

fr<octtan ; 
ted b•ck =B: 

+o f,,.,d e{{«;hve 'Ovt:: ¥r, 
1. apply A 1r fE. & ~ 

Figure X10A.2: Calculating Rout for the non-inverting amplifier 

2. Inverting amplifier 
Compare Text exercise 4.11, 
p. 235 

Problem: Ri, Rout: transresistance amplifier 

1. Find Rin for a transresistance amplifier-a current-to-voltage 
converter made by treating the - input to the op amp as input (as 
in the photosensor exercise in Lab 7). Rfeedback is lOOk. 

look 

r,, ~? 

Figure X10A.3: Rin for current-to-voltage converter 

2. Calculate Rout for a xlO inverting amplifier made with the op 
amp described by specs shown in question 1, above. Find the 
values at DC and at 10kHz (consult gain curve, question 1). 
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Solution: 

A qualitative view 

Rin: This is harder to state than it is for the non-inverting case. The general notion is simple: 
apply a f1 V to the inverting input, and the op amp output leaps, forcing a large current back 
at you through the feedback resistor. That large licurrent for small f1 V amounts to a very 
low input impedance. 

We will leave the details to this diagram: 

4. pvtfinj l~rJ.e ~AJit~ye. 
across R, + Rp: 
e.v- (-AAu-) : (1 +A).61.T 

so:, fma I!J, fhe "'fff,.hve r;,., 
is fovnd, 7Jilme'J r;;, = ..111'/M 
/.e., RF 

r;, = itA 
(add R, -fo numerattJr, if s'Jn;f;cant; 
we've al~o rynol1!d para 1/e/ ~stsfance 
of .e;., al!.cXi s ":. 1}', 

S. anc!, -r.,,. inveriiny ampl;fJer 
e!fec hve r;;v~: 1S same as' 
tor non- !i'lVerh"J a'"'pli[rer : 

.Ro ~sl.(.a/& 
IJflorab le 

.3. op-a,...,p ~rnp/;fies A1r 

~ .i+s £1a"1e) o~n-loop 
3acn, A, 1o -AAv here 

fl,e input mdarx:e is 
Ji.st ~l flus wAat ~ 
a/culated al:cve. 

Figure X10A.4: Calculating Rin for inverting amplifier, shown as transresistance amp (no input resistor), and for inverting 
amplifier along the way 

Inverting amplifier 

The curious fact, noted in the diagram above, is that Raut for the inverting amplifier is not 
a new case at all. We can simply redraw the circuit to reveal it as the same circuit as the 
non-inverting amp (to make this evident, ground the input in both cases). 

So, Rout again is the hardware value of Rout• reduced by the factor 1/( 1 + AB). Bis 1/11 = 0.1; 
A is 100,000 at DC, 100 at 10kHz; the values of AB at those two frequencies are 10, 000 and 
10, respectively. So Rout is 

At DC: lOOQ I (1 + lOK)"" O.OlQ 

at 10kHz: lOOQ I (1 + 10) "' lOQ 

Now you can see why you failed to get any intelligible reading when, back in Lab 7, you 
tried to measure Rout for these amplifiers. 
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• Design Tips 
• Two problems: 

zero-crossing detector, using single-supply comparator 
split-supply comparator (as usual), thresholds specified 

Schmitt Tri~ger Desi~n Tips 
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Setting Thresholds Setting particular thresholds can be a pain in the neck. The process 
may put you through tedious algebra (see, e.g., Text's problem 
calling for thresholds at 1 V. and 1.5V: p. 232, exercise 4.10). But 
there are two easy cases: 

Two easy cases 

Thresholds symmetrical about zero: 
For example, if you want thresholds at± IV, and output swing is ±15V. The feedback 

divider pulls threshold equally far above and below ground: the foot of the feedback divider 
is tied to ground. •l5" 

<lV 

I ! 4 v71i~ : Yt6 Ll VavT 
-J v 

10* 

(a!mosf 1~~ t 1S V) 

{ w';l close :just 
~T fr-om -JSV) 

Figure XlOB.l: One easy case: thresholds symmetrical about zero 

The divider is to deliver 1 V out of 15 => R2 "" 15 x (R 1) ("14X," if you want to be more 
precise). 

The key notion is that the foot of the divider is put at the midpoint of the output swing. 
You'd get the same tidy result if the thresholds were to be symmetric about 2.5V while the 
output swung between 0 and +5: say, thresholds at 2.4V and 2.6 V. 
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Thresholds veryjar from symmetrical: 

1k 

I+15V 

1501< ov 
+1V 

I 
ov 

Figure XIOB.2: A second easy case: thresholds pulled in only one direction ('very far from symmetrical') 

For example,if you want thresholds at OV and +0.1 V, and output swings 0 to +5. Here 
the feedback divider pulls up but not down. So just design a divider that pulls the threshold 

up to 0.1 V: R 1 I (R 1 + R2) x 5V = 0.1 V. That means V Thresh is about one part in 50, and R2 

is about 50 X R1. 

An easier task: Determining Hysteresis 
Suppose the task given is not "put thresholds at 1 V and I .IV," but 
instead "set hysteresis at 0.1 V; put thresholds close to IV." 

The two formulations look just about equivalent, but the second task 
turns out to be much easier than the first. 

Let's try this task. Suppose output swing is 0 to +5V.: 

3'1k 

(50R1 zR~) 
? I 1 L\VriiR~o.lV 

~ 

model; e1'"'u•ltY!f 

lu adud! diuirler 

Figure XIOB.3: Aiming for particular hysteresis, near a target voltage: Threshold and hysteresis considered separately 
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Here's the process: 

Hysteresis: 

Ch. 4: Worked Examples: Schmitt Trigger 

This is detennined entirely by the divider ratio. Again we 
want 0.1 V /5V: one part in 50; again R2 ... 50 R 1• 
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Thresholds "close to 1 V.:" 
This is determined by the voltage to which the foot of the 
feedback divider is tied (at the moment, let's assume we 
have a handy source of this 1 V, an ideal voltage source; in 
fact, we are going to use a voltage divider, and then we will 
treat VTh as that 'voltage at the foot. . .' If this issue isn't 
yet worrying you, forget this comment until later). 

You'll provide this 1 V with a voltage divider-but it has 
some RTh. Does that mess things up? No: let Rrh = the 
value you want for R1. 

This settling for approximate thresholds may seem like a cheap trick. Often it is not: 
often what you want is not named threshold voltages, but an approximate threshold, and 
appropriate hysteresis. Then this shortcut fits the formulated goals nicely. 

A Wrinkle: Adjustable Threshold 

Can you see a way to make threshold adjustable while holding hysteresis constant? 
(Possible help: recall that op amps are cheap.) 

r5 
11 k +5v 

1k 
50k 

+Sv 

{ 

7ok 

!')0/'; 

Sl<. 

Figure XIOB.4: Two ways to hold hysteresis constant despite changes of threshold 
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Two Problems 

1. Zero-crossing detector 

Solution: 

Problem: Design a zero-crossing detector 

We want to know when the AC line voltage crosses zero (within a few 
100 jls). We are to use a single-supply comparator, powered from +5V, 
and we have a 12.6V transformer output available; the transformer is 
powered from the 'line' (60Hz). 

~~on 1 ~ bO-;j \ 

12.6V -.q;. -18 V 

~sv 
+5Y 

lk 

cJ~mp, insfeJd of 
dividi"3 device 

L steeper waveform, 
dece'sive ; smaller delaj 

!-low much dela!:J? 

more 

rhreshold 
( 'PP"')' kTc >:;' 

~0.1m.J 

T IOOpF · "spe<.dup cap"-
give> kick of h;pferesis 

11< 

/1ake sure lwer fhresho /J > 0; otherwise 

sin_gle- suppf:J comparator md::J nof switch. 

% ~ 2df 

-= 6 · ISV· 60/lz 
= 6.5 %,_, 

Figure XlOB.S: Zero-crossing detector 

2. Schmitt trigger, thresholds specified 

Problem: Schmitt trigger, thresholds specified, (outside range of output 
swing) 

Design a Schmitt trigger, using a '311 powered from ±5V, to the 

following specifications: 

• output swing: 0 to +5V 
• thresholds: ±O.lV (approximate) 
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Solution: 

This problem could be painful if we were not willing to approximate; so let's feel free to 
use approximations. It helps to consider the two cases separately: what happens when the 
'311 output is low (OV) vs. what happens when the output is high (5V). 

Lnpu!-
lk 

ouf(luf 

R~.. 
5oof/.. 

Figure XlOB.6: Solution: aiming for particular thresholds, but willing to miss by a bit 
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Ch. 4: Op Amp Innards 

Annotated Schematic of the LF 411 Op Amp 

You very seldom need to know in detail what's going on within an op amp, but it's fun 
and satisfying to look at a scary schematic and realize that you can recognize familiar circuit 
elements. 

If the sheer quantity of circuitry here didn't scare you off, you might recognize at least 
the following elements without our help: a differential amp at the input stage; a common 
emitter amp, next; a push-pull output-and a hall of mirrors! The current limit at the output 
mimics a trick you will see in the '723 voltage regulator (Chapter 6; Lab and Class 12). 

Some of the details are subtle, though, so we've done what we can to explain through 
our annotations. We offer this schematic both as a reviewing device and as a reward for the 
hard work you put into Chapters 2 and 3. We hope that this exercise makes you feel 
knowledgeable-lets you feel that you are beginning to be able to read schematics that 
would have meant nothing to you just a few weeks ago. 

c.urr-ent- rn;rror 
"a.c.+,;.e.-(oad" 
fDr d,W[ oMP.; 
Q 1 ~d u.ces ef.rect 
of Qz's base 
c:..urr~nt 

follower, .w;H-. 
curnni -s1nk. 
pt< II down CQ18 ) 

push-pc.dl 
f'o \lol<l€r; 
er111 Her res,·sfors 
prevent w""o.l 
rvnatva~, and 
sense Dvfput 

', cumnt fbr 

fari. t>{ cv~ni r•,rror : 
defu;~5 VSE •f Q,g E. <;lt~ 
(usu:llj doM .b:J" a .+n. nsis for 
on pro re.IY\mm tude 4 "''N1ir) 

Figure OPIN.l: LF411 schematic, annotated 

1 short-cin::~·,t 
1 Limi·h" 

cvmnt Lj,..;,t: 
Glu rol>s Qs 's 
base curnnt 
wh~n IotJ/-'22$1.= 
"·'V; li~wi~e. 
for Qro, whtC.h 
robs ut~'s base 
cvrnnt, Vlo Qw. 



233 

Lab 10: Op Amps III: Positive Feedback, Good & Bad 

Reading: 

Problems: 

Chapter 4: 4.23 to end, pp. 229-261; see 
especially sees. 4.33-4.35, re op amp 
frequency-compensation. 

Chapter 5: For this lab the important part is 
5.12-5.15 (pp. 284-291), sees. 5.17-5.18 
(pp. 296-300). The '555 is the most 
important IC oscillator. 

Read the first part of the chapter for general 
cultural enlightenment only. 

Chapter 4: Embedded problems. Additional 
Exercises 5, 6, 7 (the last two introduce an 
intriguing circuit called a "negative 
impedance converter") .. 

Bad Circuits I, J, M 

Chapter 5: Problems 5.8 and 5.9 in text. 
Additional Exercises (Ch. 5): 3, 4 (tricks 
with 555's). 

Positive Feedback: Good and Bad 

Until now we have treated positive feedback as evil--or as a mistake: it's what you get 
when you get confused about which op amp terminal you're feeding. Today you will 
qualify this view: you will find that positive feedback can be useful: it can improve the 
performance of a comparator; it can be combined with negative feedback to make an 
oscillator ("relaxation oscillator": there positive feedback dominates); or to make a Negative 
Impedance Converter (see exercise AE 4-6, 4-7: there, negative feedback dominates). And 
another clever circuit combines positive with negative feedback to produce a sine wave out 
(this is the "Wien bridge oscillator"). 

The more novel part of today's lab lies in the circuits that demonstrate what a pain in the 
neck positive feedback can be when it sneaks up on you. These circuits oscillate when they 
should not. Today, of course, they "should," in the sense that we want you to see and 
believe in the problem of unwanted oscillations. On an ordinary day, the oscillations that 
these circuits can produce would be undesirable, and would call for a remedy. Today you 
will try first to bring on oscillations, then to stop them. Some of these ways to stop 
oscillations should go into your growing bag of tricks. 
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A. Positive Feedback: Benign 

10-1 Two Comparators 
Comparators work best with positive feedback. But before we show you these good 

circuits, let's look at two poor comparator circuits: one using an op amp, the other using a 
special-purpose comparator chip. These circuits will perform poorly; they will help you to 
see what's good about the improved comparator that does use positive feedback. 

Defective comparators: open-loop 

Op Amp as Comparator 

+15' 

-:- -15 

Figure LlO.l: Op amp as simple comparator 

You will recognize this "comparator" circuit as the very first op amp circuit you wired, 
where the point was just to show you the "astounding" high gain of the device. In that first 
glimpse of the op amp, that excessive gain probably looked useless. Here, when we view 
the circuit as a comparator, the very high gain and the "pinned" output are what we want. 

Drive the circuit with a sine wave at around 100KHz, and notice that the output "square 
wave" output is not as square as one would hope. Why not? 

Special-Purpose Comparator IC 
+15 

lk 

-15 
Figure L10.2: 311 comparator: no feedback 

Now substitute a 311 comparator for the 411. (The pinouts are not the same.) You will 
notice that the output stage looks funny: it is not like an op amp's, which is always a push
pull; instead, two pins are brought out, and these are connected to the collector and emitter 
of the output transistor, respectively. These pins let the user determine both the top and 
bottom of the output swing. Often one uses +5 and ground here, to make the output 
compatible with standard digital devices. In the circuits below, you will keep the top of the 
swing at+ 15 V, but you will take advantage of your control over the bottom of the swing: 
at first you will set it to ground, later to -15V. Does the 311 perform better than the 411 ?1 

1. This question reminds us of a question posed to us by a student a few years ago: 'I can't find a 411. Is a 311 close enough?' 
This poor person no doubt was recalling the many times we had said, 'Put away that calculator! We'll settle for 10% 
answers; 27t is 6,' and so on. 
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Oscillations 

A side-effect of the 311 's fast response is its readiness to oscillate when given a "close 
question"-a small voltage difference between its inputs. Try to tease your 311 into 
oscillating, by feeding a sine wave with a gentle slope. With some tinkering you can evoke 
strange and lovely waveforms that remind some of the Taj Mahal in moonlight-but remind 
others of the gas storage tanks on the Boston's Southeast Expressway. Judge for yourself. 

A good comparator: Schmitt Trigger: using positive feedback 

+15 

4.71< 

lok 

Figure L10.3: Schmitt trigger: comparator with positive feedback (&hysteresis) 

The positive feedback used in the circuit above will eliminate those pretty but harmful 
oscillations. Predict the thresholds of the circuit above; then try it out. 

Notice that triggering stops for sine waves smaller than some critical amplitude. Explain. 
Measure the hysteresis. Observe the rapid transitions at the output, independent of the input 
waveform or frequency. Look at both comparator terminals. 

Reconnect the so-called "Ground" pin of the 311 (poorly named!) to -15v. (This pin is 
not necessarily ground, evidently; instead, it is the emitter of the output transistor.) Perhaps 
you can now see why the chip's designers brought out this pin, as well as why they 
provided an open-collector output. 
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10-2 RC Oscillator 
1ook +15" 

4.7k 

Figure L10.4: RC relaxation oscillator 

Now connect an RC network from output to the comparator's inverting input, as shown 
above. This feedback signal replaces any external signal source; the circuit has no input. 
Here, incidentally, you are for the first time providing both negative and positive feedback. 

Predict the frequency of oscillation, and then compare your prediction with what you 
observe. 

IC Relaxation Oscillator: 7555 

The 555 and its derivatives have made the design of moderate-frequency oscillators easy. 
There is seldom any reason to design an oscillator from scratch, using an op amp as we did 
in the proceeding exercise. The 7555 is an improved 555, made with CMOS. It runs up to 
500 kHz (versus 100 kHz for the 555), and its very high input impedances and rail-to-rail 
output swings can simplify designs. 

10-3 7555 IC Oscillator (square wave) 

Figure L10.5: 7555 relaxation oscillator: traditiona1555 astable 

Connect a 7555 in the 555's classic relaxation oscillator configuration, as shown above. 
Look at the output. Is the frequency correctly predicted by 

fosc = 1 / (0.7 [RA + 2RB] C), 
as derived in Exercise 5.8? 

Now look at the waveform on the capacitor. What voltage levels does it run between? 
Does this make sense? 

Now replace RB with a short circuit. What do you expect to see at the capacitor? At 
the output? 

An Alternative Astable Circuit 
The 7555 can produce a true 50% duty-cycle square wave, if you invent a scheme that 

lets it charge and discharge the capacitor through a single resistor. See if you can draw such 
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a design, and then try it. Hint: the old 555 could not do this trick; the 7555 can because of 
its clean rail-to-rail output swing. 

Figure L10.6: 7555 relaxation oscillator: an alternative configuration (your design) 

When you get your design working, consider the following issues: 

In what way does the output waveform of this circuit differ from the output of the 
traditional 555 astable? 

Is the oscillator's period sensitive to loading? See what a lOk resistive load does, 
for example. 

If your design is the same as ours, then the frequency of oscillation should be 
fosc = 1/(1.4 RC) 

-which is the same as for the 'classic' configuration, except that it eliminates the 
complication of the differing charge and discharge paths. 

Does the value of fosc that you measure for your design match what you would predict? 

Finally, try Vee = +5V with either of your circuits, to see to what extent the output 
frequency depends on the supply voltage. 

10-4 Sawtooth Oscillator 
-.----~---------1~.- ~~ 

+ISV 

2.'7k '2k 
8 

v~ 

12k 
1 

Figure L10.7: 7555 sawtooth oscillator 

Generate a sawtooth wave by replacing RA and R8 of the first circuit with a current source, 
as in the figure above (and Additional Exercise 3). Look at the waveform on the capacitor 
(be sure to use a X 10 scope probe). What do you predict the frequency to be? Check it. 
What should the "output" waveform (pin 3) look like? 

10-5 Triangle Oscillator (optional) 

You could generate the sawtooth (at somewhat lower frequency) by replacing the bipolar 
current source with the two-terminal JFET current source you met back in Lab 7: the 
1N5294 (0.75 rnA). Would that produce a better or worse sawtooth? 

With one more of those JFET current sources--or with one JFET source and a clever use 
of a bridge, as suggested in the Text-you could generate a triangle output. 
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Figure L10.8: Triangle generator, using JFET current source or sources (your design) 

Would this triangle be better than the one you produced back in Lab 7? If you're in the 
mood, try out your design for the triangle generator. 

10-6 Sine Wave Oscillator: Wien Bridge 

.>-~t--- output 

f = z/Rc 

Figure L10.9: Wien bridge oscillator 

Curiously enough, the sine wave is one of the most difficult waveforms to synthesize. 
(Your function generators make a sine by chipping the corners off a triangle!) The Wien 
bridge oscillator makes a sine by cleverly adjusting its gain so as to prevent clipping (which 
would occur if gain were too high) while keeping the oscillation from dying away (which 
would occur if gain were too low). 

The frequency favored by the positive feedback network should be 
l/(21tRC) 

See whether your oscillator runs at this predicted frequency. 
At this frequency, the signal fed back should be in phase with the output, and 1/3 the 

amplitude of Vout· The negative feedback adjusts the gain, exploiting the lamp's current
dependent resistance (the lamp is rated at 14mA@ lOv). Convince yourself that the sense 
in which the lamp's resistance varies tends to stabilize gain at the necessary value. What 
gain is necessary to sustain oscillations without clipping? 

You can reduce the amplitude out by substituting a smaller resistor for the 560 ohms in 
the negative feedback path. 

Try poking the non-inverting input with your finger and note the funny rubbery behavior 
at the output. Try sweeping the scope slowly as you poke: now you can watch the slow 
dying away of this oscillation of the sine's envelope. Why does the envelope do this? 
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B. Unwanted Oscillations 

10-7 Follower 
How can this circuit oscillate? 

+15 

out 

Figure LlO.lO: Follower as oscillator 

To answer that riddle one must answer two subsidiary riddles: 

How does the circuit achieve voltage gain (so as to sustain oscillations)? 

How does the circuit provide positive feedback? 

The answers depend on the truism that power supplies are not perfect: 
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the gain appears if one draws explicitly the inductance always implicit in the power 
supply, along with stray capacitance: 

+15 

+5 } po.sitive fm:lba~k 

Figure LlO.ll: Follower redrawn to include feedback, and inductance that can provide gain 

The feedback appears if one notices that a disturbance on the power supply, which 
here is the collector, can disturb the emitter (through CE capacitance) in a sense 
that increases the collector disturbance: in other words, here is positive feedback. 

This circuit, as redrawn, is nearly identical to the current source whose oscillations are 
explained in the Text at p. 167 (sec. 5.18, p.298, p.300, fig. 5.46). There the circuit is 
likened to a purposeful oscillator called a Hartley LC oscillator. 

Most of us settle for learning some rules of thumb that stop oscillations when they 
appear; it is not easy to model a circuit in detail, including stray inductance and capacitance. 
A sort of electronic Murphy's law holds, however: if the circuit can find a frequency at 
which it could sustain an oscillation, it will find that frequency and oscillate-irritating its 
designer. 

Build the circuit, and watch the emitter (if you try to watch the collector instead, you are 
likely to kill the oscillation with the scope probe's capacitance). See what "ground" is 
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doing at the foot of the emitter resistor, as well. (To measure this voltage you must ground 
the scope lead some distance away.) 

If the circuit fails to show oscillations, try worsening your supply by making the path for 
+ 15V to your circuit more circuitous: pass it through a wire a couple of feet long. When 
the path is crummy enough (that is, inductive enough), the oscillation should begin. 

Remedies 
You saw, we hope, a high-frequency oscillation (in our lab, we saw a sine wave of a 

couple of volts at about 100 MHz). We can stop it as we stop or prevent op amp 
oscillations: 

by shrinking the disturbance that is fed back; or 

by diminishing the circuit's (high-frequency-) gain. 

Supply Bypass (Shrinking the disturbance fed back) 

You can stop the oscillation by quieting the collector: this "shrinks the disturbance," in 
the terms we used just above. 

You can quiet the collector with a capacitor to ground. This cap "isolates" the power 
lines from the transistor circuit; or, to say the same thing in other terms, provides a local 
source of charge when the transistor begins to conduct more heavily: the power supply and 
ground lines need not provide this surge of current, and therefore will not jump in response; 
instead, the local bucket of charge will provide the needed current. Try a ceramic capacitor, 
about 0.01 to O.lj.!F. 

Killing High-Frequency Gain 

The gain of this common base circuit is 
Rc (or Zc) I ( re + [(resistance driving base)/ (1 + ~) ] } 

Here, with the base driven by a stiff voltage source, the denominator of the gain equation is 
just "little re;" but we can diminish the gain in a way equivalent to the way we cut the gain 
of the common-emitter amp: by tacking in a resistor that enlarges the denominator of the 
gain equation. Here, we insert a resistor in series with the base; in the common-emitter we 
achieved an equivalent reduction of gain by inserting a resistor in series with the emitter. 

Try this remedy: add a resistor of few hundred ohms between the +5 V source and the 
base. Does this stop the oscillation. Make sense? 
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10-8 Op Amp Instability: Phase Shift Can Make an Op Amp Oscillate 

Low-Pass Filter in the Feedback Loop 

The circuit below includes a capacitor you are not likely to install (though you might, in a 
sample-and-hold: see sec. 4.18, p. 221); more often the capacitance would be an 
unavoidable part of the load; it might arise because the op amp needed to drive a long cable, 
for example. 

Figure L10.12: Load capacitance can make a feedback circuit unstable 

This circuit may not oscillate, at first. If it does not, drive it with a square wave. That 
should start it, and once started it is likely to continue even when you turn off the function 
generator, or change to a sine wave. 

Remedy: Shrink the Disturbance Fed Back 

Figure L10.13: Circuit with gain is more stable than similar circuit at unity gain 

Modify the follower circuit slightly by inserting a lOOk pot in the feedback path. Begin 
with the pot turned so as to feed the entire output signal back (gain = 1; this is just the 
follower, again). Again set the circuit oscillating, with a square wave input if necessary. 

Now gradually tum the pot so as to shrink the fraction of Vout that is fed back. (What are 
you doing to gain, incidentally?) When the oscillation stops, see how the circuit responds to 
a small square wave (make sure the output does not saturate). If you see what looks like 
ringing (or like the decaying oscillation of a resonant circuit), continue to shrink the fraction 
of vout that is fed back until that ringing stops. 

We hope that you now have confirmed to your satisfaction that stability can depend on 
the gain of a feedback circuit. This fact explains why so-called "uncompensated" op amps 
are available: if you know you will use your op amp for substantial gain, you are wasting 
bandwidth when you use an amp compensated for stability at unity gain. 
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Ch. 4 Review: Important Topics 
Operational Amplifiers; Feedback 

1. Generally: 

a. feedback as a general technique vs use with op amps 

b. idealized view of op amps: the "Golden Rules" 

2. Important Circuits 

a. Negative Feedback 

i. amplifiers 

1. non-inverting 
DC,AC 

2. inverting 

a. incidental virtue: "virtual ground" or "summing 
junction" 

ii. integrator: ideal-but usually compromised for stability 

iii. differcntiator: always compromised for stability 

iv. active versions of other familiar circuits: 

1. current source 

2. push-pull 

3. rectifier 

4. clamp 

b. Positive Feedback 

i. Schmitt trigger 

ii. relaxation oscillator 

c. Circuits using both positive and negative feedback 

i. NIC 

ii. oscillators 

1. relaxation oscillator 

2. Wien bridge (sine; gain control) 

3. Generally, again: a second view: Departures from Ideal 

a. important op amp characteristics/ imperfections: 
Vos• /bias• los• frequency limits: fT. slew rate 

b. stability: "compensation" 
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Ch.4: Jargon and Terms 

bias current (/bias): average of input currents flowing atop amp's two inputs 
(inverting, non-inverting) 

frequency compensation 
deliberate rolling-off of op amp gain as frequency rises: used to 
assure stability of feedback circuits despite dangerously-large phase 
shifts that occur at high frequencies 

hysteresis as applied to Schmitt trigger comparator circuits: the voltage 
difference between upper and lower thresholds 

offset current difference between input currents flowing atop amp's two inputs 
(inverting, non-inverting) 

offset voltage op amp's input stage mismatch voltage: the voltage that one must 
apply in order to bring the op amp output to zero. 

slew rate maximum rate (dV/dt) at which op amp output voltage can change 
saturation condition in which op amp output voltage has reached one of the two 

(±) output voltage limits, usually within about 1.5V of the two 
supplies 

Schmitt trigger comparator circuit that includes positive feedback 
summing junction inverting terminal of op amp, when op amp is wired in inverting 

configuration: inverting terminal then sums currents. That is, /feedback 
is algebraic sum of all currents input to the summing junction 

transresistance amplifier 

virtual ground 

current to voltage converter: 

Figure JR4.1: Transrcsistancc amplifcr, or current-to-voltage converter 

inverting terminal (-) of op amp, when non-inverting terminal is 
grounded. Feedback tries to hold (-) at OV (hence "virtual ground"), 
and current sent to that terminal does not disappear into "ground," 
but instead flows through the feedback path (hence the ground is 
only "virtual") 
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Topics: 

• old: 

• new: 

CHAPTER 3 (revisited) 

Class 11: FETs II: Switches 

power switching: using bipolar transistor (compared against FET) 

power switching (and logic): MOSFETs versus bipolars 

analog switches (small signals, passed by series transistor(s)) 

+ CMOS generally beat other FET configurations (and bipolars) 

• imperfections of CMOS analog switches 

• applications: 

sample & hold 

+ choosing components for S&H 

Power switching, and 'logic' switches 
Power switching: turning something On or Off 

You built a bipolar switch, long ago (Lab 4); today you'll build the equivalent circuit with 
a "power MOSFET" (=just "big, brawny" MOSFET). 

oi 
5-r 

Figure Nll.l: Two power switching circuits: bipolar and MOSFET, doing the same job 

What's to choose, between the two? 

Besides price, the most important issues are: 

1. how much power the switch wastes when ON (indicated by Ron• for the MOSFET, 

vsaturation for the bipolar); and 

2. how easy or hard the thing is to drive. 
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Text sec. 3.14, 
p. 166, table 3.6 

How On is On? 

Small bipolars win in the first characteristic, but big FETs at high currents do better 
(remember to include the power wasted as / 8 through the 0.6V VBE• to be fair to the FET!) 
The contrasting specifications are the bipolar's saturation voltage (watch out for the nasty 
fact that "saturation" means something quite different when applied to FETs!) versus the 
PET's Ron· 

How hard is the thing to drive? 
Sec Text sec. 3.14, 
,··'!'· pp. 161-62 

The symbol for the MOSFET should be sufficient to remind you of this transistor's giant 
input impedance at DC. You'll see that in the lab, when you find that your finger can tum 
the thing on or off (if you touch your other hand to +5, then ground). At higher frequencies, 
the PET's higher capacitances begin to tip things against it. 

Another argument for PETs: no 'secondary breakdown' 
Text sec. 3.14, 
}~g. 3.66, p. 160 

As the Text figure shows (fig. 3.66), local "current hogging" on the bipolar transistor 
makes the device behave like a transistor with a lower power rating, once the voltage across 
the device is appreciable (the figure shows the effect beginning at only lOY). PETs don't 
behave this way. They are inclined to slough off work instead of hogging it. This doesn't 
mean a bipolar cannot a particular job; it just means that you have to use a bigger transistor 
than you might expect to because of this effect. 

Effects ofF EI' capacitances on switching 
Text sec. 3.17, esp. 
fzg. 3.70,p.163; 
and see sec. 13.23 

The values of input capacitance-Cgs and Cga-are big (lOO's of pF for a MOSFET that 
can handle a few amps at low R0 n). But feedback makes things look even worse, exactly as 
Miller effect gave us trouble at high frequencies: the Cgd gets exaggerated by the quick 
swing of the drain as the device switches: that big dV /dt causes a large flow of current in 
C_gd· You'll see that effect in the lab--<:ausing a strange kink or hesitation in the movement 
ot gate voltage, as the MOSFET switches: 

Figure Nll.2: Slewing of drain slows movement of gate voltage, as transistor switches 
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Analog Switches 
You can appreciate the CMOS analog switch by trying to achieve what it does, but using 

some other scheme: 

+10 :!:1____c_ 

-15 .r--v-' 
Ut 

-1Sv 

_,:,:P 
block 

MoSFET 

out 

1ok 

Figure Nl1.3: Not-so-good analog switches: bipolar; JFET; n-MOSFET 

These work (in some respects the alternative FET switches work better than CMOS), but 
only with restrictions. The switch most widely used is made of CMOS-a complementary" 
pair of MOSFETs, n- and p-channel: 

Hr.re 01 
fallers 
Cins~ff;c;ent v.;!J 

Q., Q2 h.Jp e.11c:!. .,thor 
he.p switd. on 

stgnal m 
{ovfj 

Figure N11.4: CMOS Analog Switch: either n-channel or p-channel alone would have trouble with part of input signal 

It is a nifty Jack Sprat circuit, as you can confirm if you imagine applying an input signal 
that swings all the way from negative to positive supply. Good CMOS switches-like the 
one you will meet in the lab-handle such wide signal swings happily. 
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I mpeifections 
rcxt sec. 3.11, 
Jip. 141-42 
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A perfect transistor switch would be fully ON or fully OFF: it would behave like the 
mechanical switch. A real transistor switch comes close, but achieves neither ideal, of 
course. When ON, it looks like a small resistor (the DG403, which you'll use in the lab 
looks like 300. or less); when OFF, it looks like a small capacitance linking input to output 
(DG403:about 0.5 pF); it also leaks a little: a steady current may flow (DG403: < 0.5 nA). 
Whether or not these imperfections matter to you depends on the circuit. Consider some 
cases: 

1MHJ 

@:Tr: 
!OM 

C.TRL -

6J~, .)0.{2. 

CTRL 

6)::9±, ' I IOtF 
CTRL _ 

Figure N11.5: Some switch applications: does it matter that the switch does not match the ideal, either ON or OFF? 

Applications 

Sample & Hold 

This is an important circuit, and provides a good test bed for consideration of the effects 
of switch imperfections. 

I 
I 

CONTROL- 7--~ 
Figure Nl1.6: Sample & hold: simple scheme 

• 
1;;£/T 

The sample-&-hold is useful whenever an analog value must be held constant for a while. 
The most frequent need for this function is in feeding an analog-to-digital converter, which 
takes some time to carry out the conversion, and likes to look at a constant voltage while it 
is making up its mind. 

Often a buffer is added on the input side, to drive the cap promptly to the sampled 
voltage. The output buffer prevents leakage of the held charge. (In the lab, we omit the 
left-hand buffer for simplicity, relying instead upon the low source resistance of the 
function generator.) 
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Choosing C 
What is at stake in the choice of C? What good and bad effects result from use of a large 

C? -from use of a small C? 
Roughly: 

A large C makes it easy to hold, but hard to sample. 

Sampling 

We want Vcap to come close to Vin· Two issues here: 

Assuming input sits still: 
count RC's to get error less than any specified level (5 
RC's to get within 1%, for example). What's the relevant 
R? 

Assuming input is moving: 
R and C limit the speed of input change that the device can 
follow during the sampling. 

You will find a sample & hold design problem done as a Worked Example. In these notes 
we will only note the sources of error. 

Standard Design Issues 

• What size C? (We know now that we lose something at either extreme.) 
• How long do we need to sample? 

What size C? 
Big enough to keep droop tolerable: use I = C dv/dt. 

• I = leakage currents (sum of all: analog switch, capacitor's self-discharge, op amp 
buffer's bias current); 

• dt or ~t = the hold time-usually just long enough to allow an AID to complete its 
conversion; 

• dv or ~v =the tolerable change of voltage during conversion: the judgment of what 
is tolerable must be somewhat arbitrary; let's suppose we will let the S&H 
contribute a total error of 1/2 the resolution of the converter. We have already used 
up about 1/2 this total "error budget" in the sampling stage: VcAP did not quite 
reach Vin• remember? So we can allow droop to soak up the remainder of the 
budget: 1/4 resolution of the converter. 

This result puts a lower limit on C. The sampling concerns put an upper limit, for a given 
sampling time. As usual, we are caught between two competing concerns. 

Sampling 

Here the goal is to get Vcap close to Vin• and do it fast. The non-zero Ron of the analog 
switch limits the speed at which we can charge the storage cap; so does the output 
impedance of the source--or, if the source is an op amp buffer, then the op amp's output 
current limit and slew rate best describe the characteristics that slow the cap's charging. 
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Effects of "charge injection" 
Text sec. 3.12,pp.149-50 

Class 11: FETs II: Switches 249 

When we turn the switch OFF, unfortunately, stray capacitance between the gates of the 
transistors and the output squirts a dose of charge into the storage capacitor. For the 
DG403, that dose is 60pC. 

That doesn't sound big until you look at the ~V it causes when dumped into a small cap: 
Q= CV; ~V =~Q/C 
= 60pC/10pF = 6 V! 

The hazard of charge injection, therefore, pushes us toward larger cap size; so does the 
problem of feedthrough: the transmission of high-frequency signal when the switch is 
turned off. 

In short, we need a cap a good deal bigger than what we might choose if we considered 
only the problem of droop. 

Summary of S & H Errors 
Text sec. 4.15, 
p. 219,fig. 4.41 

Here's the Text's diagram summarizing S&H errors with switching delay added: 

II-> 
1 

timf 
S!tJAPLEj HoLE __ _J 

Figure N11.7: Sample & hold errors 

The effect of charge injection, called "hold step," here is a negative-going error. The 
switching delays provide a further reason why fairly long sample or acquisition times are 
necessary. The DG403 takes around lOOns to switch; pretty clearly we would be kidding 
ourselves if we did a droop calculation and an RC acquisition calculation and concluded 
that we could acquire the data in 10 ns. 

Finally, to give you some seq,se of what values to expect, here are some typical 
specifications for good integrated S&H's: 

Acquisition Time 

200ns 
3J..LS 

Storage Capacitor 

AD7569 
AD585 

100 pF (internal; may be increased by use 
of external cap) 

AD585 

#of bits 

8 bits 
12 bits 

Figure N11.8: Some typical characteristics: integrated sample & holds 
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Ch. 3: Worked Example: Sample & Hold 

Two worked examples: 

1. Design a sample-and-hold to suit a particular AID converter's demands 

2. Figure out what advantages two improved S & H circuits offer 

These notes look in greater detail at an issue discussed in class Notes 11. 

Problem: Design a Sample & Hold to feed a particular AID 

This sample-and-hold is to feed a 12-bit AID converter (an analog-to
digital converter that slices a lOY input range into 212 slices: 4k little 
slices). 

Sampling 

Assume: 

• the analog switch's Ron is 30Q; 
• we want our sampled voltage error less than 1 bit (one part in 212 

of the 1 OV range); 
• We need to hold for 25 )l.S (during this time, the AID converter 

does its job, and wants a nearly-constant input voltage). 

What C? How long do we need to sample? 

The voltage corresponding to J bit (an error larger than what we allowed ourselves in the 
Class Note discussion) is 1 part in 212, or one part in 4K: 0.025%. If we can stand an error 
of only l/2 bit (we'll see why 1/2, in a minute) then we can stand an error of only about 
0.0125%. That sounds as if it's going to be a pain to calculate; in fact, it's not: 5 RC's get 
us to an error under 1 %; 0.01% is 1% of 1 %-so 10 RC's should do it. Easy? 

Now we know Rand how many RC's we need. We don't yet know C, and we can't yet 
choose C intelligently. If we we were worrying about sampling only, then surely we would 
choose a tiny C. But we find ourselves pushed the other way as soon as we recall that our 
circuit also needs to hold. 
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Holding 
As we hold the sampled voltage, again we can tolerate less than the voltage droop that 

corresponds to a 1/2 bit error: 1 part in Sk of the lOY range: 1.25 m V. We can look up 
leakage currents on data sheets for the op amp and analog switch. That will give us I; we 
know how much voltage movement we can stand (dV); we know how long we need to hold 
(dt). We can solve for C. 

Leakage currents 
The sum of the leakage currents: /bias for the op amp; switch leakage; cap leakage; PC

board or breadboard leakage. We'll ignore the last two. 

At room temperature, the maximum values are these: 

• 
• 
• 

Ibias = 200 pA; 
switch leakage = 0.5 nA. 
I= C dV/dt ==> C = 0.7 X 10·9 (25!--ls I 1.25 mY) 
= 14 pF 

Knowing this value for C, we can look at some other effects: 

Effects of "charge injection" 
Text sec. 3.12, pp. 149-50 

As we noted in the class Notes, this small storage capacitor will get us into trouble, 
because of charge injection. The DG403's jolt of 60pC would produce a big voltage jump. 
Here is the calculation, again: 

Q = CV; f..V = f..Q/C 
= 60pC/14pF = 4.3 V 

Another concern pushes us in the same direction, toward a larger capacitor. Feedthrough 
would be bad, too, with a 14 pF cap: the DG403 looks like about 0.5 pF between input and 
output when it's off, so we'd get one part in 30 with the switch off! 

. I b::O· I I . - ~~ 
( ) C I Lf pF 
o?en I HOLD I 

Figure Xll.l: Feedthrough problem: we need a substantial cap to protect us from such errors 

We'd better back up and crank up C. We need to force the charge-step error of 4.3V 
down to acceptable levels-say, down to a millivolt or so. That seems to require that we 
crank up the value of C by a factor of about 4000. In fact, a bit less may suffice, since some 
of the charge-injection effect is a constant, which could be subtracted away. But let's 
suppose that still about 25% of the charge-step error can't be subtracted off. That charge
step suggests we will need a cap about 1000 X larger than our first choice of 14pF: around 
0.015 ~-tF. (At this point we might also start shopping for a different analog switch: one 
with smaller charge-injection!) 

How long must we sample? 

Earlier, we said 10 RCs. Now we know Cas well as R, and we can solve for a time. RC 
is 30Q X 0.015 11F = 0.45 11S, so we need to sample for 4.5 11S. 
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Limit on slewing 

The faster we want to move Vcap• the more current must flow through the switch; but a 
large current produces a large voltage error as it flows through the switch's Ron· Thus we 
face one more limitation of our sample-and-hold: a limit on its slew rate, for any given 
voltage error we decide is tolerable. 

If we tolerate (again) about a millivolt error (tolerating this additional error will carry us 
above a total 1-bit error, incidentally; let's agree to relax our requirements to this extent, to 
keep things simple), then we can solve for I, knowing Ron· The available I then defines our 
maximum dV /dt, given the C that we are using: 

I= 1 mV I 30Q = 0.03 rnA= 30 11A; 
dV/dt = l/C = 30 11A /0.015 11F = 2000 V/s = 2 V/ms 

That's slow. 
Here is a diagram to help one picture this rather-involved argument: 

Figure X11.2: Slew rate limit: current available to charge cap is limited by Ron and tolerable voltage error; hence a limit on slew 
rate 

How fast and big a sine wave you could this S&H follow? This is a calculation you did 
for op amps, back in Lab 9. The result is disappointing: 

If 
V(t) = Asincot, 

then the slope of the waveform, dV /dt, is 
Acocoscot, 

whose maximum value is just Aco. Suppose we want to sample a 5V sine wave. Then our 
limited slew rate, 2V /ms, is equal to A co. So, 

fmaximum = dV/dt / (21tA)"" 2•103 
/ 6·5"" 60Hz. 

Slow, as promised. 

The lesson from this exercise seems to be that it is hard to design a good S&H from parts. 
The commercial units-integrated, or 'hybrid' (small circuits in a small package, but not 
integrated as a whole)-work better than this S&H we have just designed. 
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Fancier Sample-and-holds 

Problem: What do these S&H's offer? 

Here are three sample-and-hold circuits that use feedback to improve performance. 
Does the feedback help? How? To what extent? 

1 

""TS> 
MODE 

CONTROL 

2 

IN 

hack +1=-r--t_ 
\\old -IS 

3 

52 

(._OIHROL INPUT 

j~J::! I ~I 
I 

R, 

I 

l 

Figure Xl1.3: Three sample & hold circuits improved by feedback 

o 0\J"Tl"UT 
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Solution: 

1) First Circuit 
Overall feedback makes the input op amp try to drive Vca to Yin· In order to do that, it 

will "try to do what's necessary ... ," as usual. In this case, that means that it will drive the 
op amp output to saturation, and that will speed the charging of the cap: 

I sv 

durin~ satl\plt- , sense_s d,ffereJ\C£. be.twe~ YuJ and VCAP, 

i\nd drive_~ sw<tch \lard to elir<\cnate_ diHere_nce. 

Figure X11.4: How circuit 1 speeds the ·acquisition' of v; •. Defects, too. 

The trouble with this circuit also appears above: during hold, the input op amp loses 
feedback and must saturate. So sampling is slowed by the op amp's need to get out of 
saturation (a process that may take a few microseconds) and then to slew to where it ought 
to be: often it will need to slew from one 'rail' to the other: across nearly 26 volts. A typical 
'411 would take almost 2f..lS to make that trip. That's a sad waste of time. 

2. Second Circuit 
Here a second analog switch is provided, just to prevent saturation of the input op amp 

during hold. 

3. Third Circuit 
Here another analog switch is inserted in the hope of reducing leakage across the hold 

switch. There's a flaw, though: it's true here that the voltage across the analog switch 
should be close to zero during hold; but leakage still can occur to the switch body and gates: 
these will be at ± 15V. So the better remedy is to get a better analog switch-or even better 
(and easier) buy someone's integrated sample and hold: it will work better than the one you 
build up from parts. 
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Reading: 

Problems: 

Sees. 3.11 -end of chapter: 
especially: 3.13: Analog switches & their 

applications; 
Sec. 3.14 power switching 

Embedded problems. 

A second FET lab: FET switches 

255 

We return to PETs in this lab, now that we have met op amps. The most important of the 
circuits that uses both switch and op amp--and the principal reason why we chose to 
postpone this second FET lab-is the sample-and-hold (11-5). This circuit is often used 
when one converts from analog into digital form, to hold the input value steady during the 
conversion process. It also serves as a good test bed for the analog switch: it reveals the 
weaknesses of the device. 

The lab begins with simpler switching circuits: it introduces you to the power MOSFET 
as an alternative to a bipolar power switch. But most of the lab is given to trying some 
applications for the so-called analog switch or transmission gate: a switch that can pass a 
signal in either direction, doing a good job of approximating a mechanical switch. This 
device is not useful as a power switch, but is so easy to use that we hope it will provoke you 
to invent--or understand-tidy solutions to old problems-like the problem of how to reset 
an integrator, for example. That's hard if you use discrete transistors; easy if you use an 
integrated analog switch. 

A. FETs as Power Switches 

11-1 Power MOSFET 
This exercise repeats a task you carried out back in Lab 4 using a bipolar transistor 

(exercise 4-9). Here you will use a MOSFET to do the job. In some respects it is much 
better than the bipolar equivalent. 

*1RLS1o (IR) 
*I?FP 41Jo5 (6E/RcA) 

IRF 511 (!R & o+Mr-s) 
HTP 5NO" (1'\o-tnrol>) 

Figure Lll.l: Power MOSFET transistor switch 
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a) Inputlmpedance 

Figure L11.2: MOSFET switching circuit 

Build the circuit shown above. Use a #47 lamp as load and confirm that the FET will 
switch when driven through the 10k resistor at low frequencies (switch the input between 0 
and +5v. by hand). High input impedance is the MOSFET's great strength, as you know. 

To get a more vivid sense of what "high input impedance" means, let the input side of the 
lOk resistor float, then touch it with one hand, and touch your other hand alternately to 
ground and the +5 supply. Impressive? Now try letting go of the lOk resistor after 
switching the FET on or off. Why does the FET seem to remember what you last told it to 
do? 1 This exercise, frivolous though it seems, foreshadows some of the strange results you 
will get if you ever forget to tie the input of aMOS logic device either high or low. 

b) Power Dissipation 
Change the Load, replacing the lamp with a pair of 100-ohm resistors in parallel (why not 

use a 50 ohm 1/4 watt resistor?) 

Measure Vns with the transistor switched on, and infer RoN for this transistor. 

How does the FET's power dissipation in this circuit compare with that for a well
saturated bipolar transistor? (See saturation curves for 2N4400, below; see also Text 
Appendix G on saturation, and notice that base current is much larger than lc/Beta.) Which 
type wins at, say 100 rnA? (For the bipolar, one should include base current in the power 
calculation.) 

You can, if you like, calculate a characteristic for the bipolar transistor analogous to RoN· 
For the 2N4400 this would be about 1 ohm from 0.1 to 0.5 A, as you can see from the curve 
below. 

10 

Ic (,.,A) 
too 5oo 

Figure L11.3: Saturation characteristic of a small bipolar power transistor 

1. Your parllcular MOSFEI may or may not "remember." !fie maximum leakage rate 1s rather h1gh. see data sheet. 
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c) Switching at Higher Frequencies 
+Sv 

100 

Figure L11.4: FET switch, again 

Effect of Input Capacitance 

Replace the manual switch that was driving the gate with a signal generator that provides 
a 0 to +5v square wave. Keep the 10 k resistor in place, for the present. Watch V GATE and 
VovT as you increase the driving frequency from about 10kHz. What goes wrong? 

Solve the problem by replacing the lOk resistor with a value that works better at high 
frequencies. Now see how the switch looks at a few hundred kHz. 

You can infer the FET's approximate Cin by looking at the shape of the waveform at the 
gate. The waveform's shape will be a little weird: the gate feels the movement of the drain 
voltage. Remind you of Miller effect? (See Text at pp. 85-86.) Find a portion that looks 
like an RC charge or discharge; measure RC. Your C should be large-and probably will be 
larger by perhaps 4X than the C1N shown on the data sheet, which is specified under 
conditions different from what you are applying: the specified V0 s is lOY; what is V0 s 
where you are measuring RC? The capacitance changes during the output swing: see data 
sheet curve for Ciss (= CGs + CGo) and Crss (= C00) at p. 8-12; see also Text sec. 3.14, 
especially fig. 3.70 at p. 163, and section 13.23, which includes some useful graphs. 

Does the scope probe's capacitance contribute any substantial error? Would this 
measurement have been much distorted if you had used a BNC cable to feed the scope, in 
place of a scope probe? 

Switching Speed (optional: if time) 

If you remove the 10k or other series resistor, you will be driving the FET with the 
function generator's Rout of 50 ohms. Now you can measure the transistor's switching 
speed, with most of the effect of the device's large input capacitance removed. Drive the 
switch with a square wave at 100kHz and measure switching time. Treat a rise or fall to 2 
volts in as the input signal, a fall or rise of output to 2 volts as the switching of the output 
signal. What delay do you find? Why does t1ow-high not equal thigh-low? 
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d) Temperature Effects (optional: if time) 

Wouldn't it be nice if transistors conducted less current as they got hot, instead of more? 
Then the problem of "thermal runaway" would disappear. Circuits would tend to stabilize 
themselves. 

Yes, the FET can behave this way. At low currents, the FET does not do this: it conducts 
more as it gets warm; but at high currents it conducts less as it heats; and at one value of /D 
the transistor shows a magical immunity to temperature 
effects. (See Text sec. 3.14, p. 162; compare fig. 3.68). 

2N4351 

71-ch~nnel 
1-!0SFET 

//, : uro ftrop. co.£ 
-+I~/' • I bias vbl+a9e 

0.1 ~',~/G,SlloC :~ 
0 0~~~~~5~~~~-1~0-L-L~ 

VGs (vot+s) 

Figure Lll.S: FET can show negative or even zero tempco 

In place of the big MOSFET you have been using, substitute a small power MOSFET, 
the VN01: it is small enough so that we can put it into the region of the curve (above) where 
the FET shows a negative temperature coefficient. 

Drive the gate from a pot (we now do not want the transistor fully ON); use a load of two 
paralleled 100 ohm resistors, again. 

+Sv 

-lo DVM ~ s 

Figure L11.6: Setup to look for negative tempco operating region 

Positive Tempco Region 

First, adjust Vgate until Vout is around 4 volts. (Use a DVM; you will need its resolution; 
these temperature effects are small.) Then warm the transistor by holding it between your 
fingers. Does / 0 grow or shrink? (Watch out for the inversion here between the signs of 11 
1n and 11 fouz.) If the heat from your fingers is not sufficient to move Vout• borrow some heat 
from a 100-ohm resistor connected between +5 and ground: press it against the VNOl (the 
transistor's leads may provide better thermal conductivity than its plastic case). 

Negative Tempco Region 

Now readjust Vgate so as to set Vout to about 0.25 V. Again heat the transistor. You 
should find the voltage moving in a direction that indicates /0 now is falling as temperature 
increases. That's good news. 
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B. CMOS Analog Switches 

The CMOS analog switch is likely to suggest solutions to problems that would be 
difficult without it. This lab aims to introduce you to this useful device. Schematically, it is 
extremely simple: it simply passes a signal or does not: 

A A 
S' ~...---D 

SL : 
HI-{)--• 

Figure L11.7: Analog switch: generic 

The switch we are using has especially nice properties: it is switched by a standard logic 
signal, 0 to +5 (High, +5 =ON). But it can handle an analog signal anywhere in the range 
between its supplies, which we will put at ±15 volts. It also happens to be a double-throw 
type, nicely suited to selecting between two sources or destinations. 

Here is the switch, and its pinout: 

~ 
~~ 
~ 

(ill +ISV 
[j1J ~sv 
(@] GJ-JD 

[ill -15v 

r----~ -----, 
D1~:'ll 

' ' ' 

~ i---c:r-@] rl-11, 3 
' ' ' 

D3 ~ ! !ill -15v (V-) 

5'3 [i}_{ -~ ~ GJ-JD 

s~h-, 
D~ r.TI-1 : 

' ' 
Ill f-a.----@ IN 2, 't 

' : ' 

P2.~S2_ 
L ____________ J 

(phjSJcaL) 

DGLjo3 analo3 s~o~ihl; S<.~itches shown With IN= 1 (HIGH) 

Figure L11.8: 00403 analog·switch: block diagram and Pinout 

As signal source use an external function generator; as source of the "digital" signal that 
turns the switch on or off use one of the slide switches on the breadboard. The easiest to 
use is the 8-position switch: put one of its slides in the ON position; now that point will be 
high or low, following the position of the slide switch just to the right of the "DIP" ("dual 
in-line package") switch. 

Caution: each package contains two switches. Tie the unused "IN" terminal to ground or 
to +5 (this makes sure the logic input to the switch does not hang up halfway, a condition 
that can cause excessive heating, and damage.) 
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11-2 RoN 
Ideally, the switch should be a short when it is ON. In fact, it shows a small resistance, 

called RoN· Measure RoN• using the setup shown below: 

::~few 
volts 

+o 'scope 

*f\Jt lkH-e • _ 
I • 

Figure L11.9: RoN measurement 

Use a 1 kHz sine of several volts' amplitude. Confirm that the switch does turn On and Off, 
and measure RoN· 

11-3 Feedthrough 
The circuit below makes the switch look better: its RoN is negligible relative to the lOOk 

resistor. Confirm this. 
When the switch is OFF, does the signal pass through the switch? Try a high-frequency 

sine (> 100 kHz). Try a square wave. If any signal passes through the OFF switch, why 
does it pass? 

Figure Lll.lO: More typical application circuit (R00 made negligible) 

Caution: don't forget that you are looking at the output with a scope probe whose 
capacitance (to ground) may be more important than its large Rin. So long as you don't 
forget that probe capacitance, you should have no trouble calculating the switch's C05. 

11-4 Chopper Circuit 
Here is a cheap way to tum a one-channel scope into two channel (and on up to more 

channels, if you like). (Query: what are the limitations on this trick?) 

to 'scope. 

_r:-0-: 
- ' . I 

Figure Lll.ll: Chopper circuit: displays two signals on one scope channel 

For a stable display, trigger on one of the input signals, not on the chopper's output, where 
the transients will confuse your scope. 
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11-5 Sample & Hold 
This application is much more important. It is used to sample a changing waveform, 

holding the sampled value while some process occurs (typically, a conversion from analog 
into digital form). 

1\.f\ ---<'!-:"""'"'L------1--i-........ srj. in. 
''silrnple'~tS r- -D..: 
"hold"-- 0 --' 

(manual sw,fch) 

Figure Lll.U: Sample & hold 

Try the circuit. Can you infer from the droop of the signal when the switch is in hold 
position, what leakage paths dominate? (This will be hard, even after some minutes of 
squinting at the scope screen; don't give your afternoon to this task!) 

Query: how does one choose C value? What good effects, and what bad, would arise 
from choice of a cap that was a) very large; b) very small? 

Can you spot the effect of charge injection immediately after a transition on the control 
input? Compare the specified injection effect and the voltage effect you would predict, 
given the specification (~ 60 pC) and the value of your storage capacitor. 

Optional: a dynamic view of charge injection 
If you inject charge periodically, by turning the switch on and off with a square wave, 

you can see the voltage error caused by charge injection in vivid form2 The held voltages 
ride above the input, by a considerable margin; you will notice the margin varies with the 
waveform voltage. Why? 

Good sample & hold circuits evidently must do better, and they do. See, e.g., the AD582 
with charge injection of< 2 pC; and see Text sec. 3.12, p. 149. 

11-6 Negative Supply from Positive 
Here's a little levitation trick, done by shoving "ground" about in a sly way. This kind of 

circuit is often put onto an integrated circuit that would otherwise require a negative supply. 

~-+--~~--~-if~ 
+ .,. 

_l;.F 

~ dcout 

.,. : [J1· 1:!)"~;::;-V,·n) 
breadboar.l • ' + "TTL" ---t.._ _ ___,..._-f~----

10 - 1ookfh. .fo v_ 
(p1n l'i) 

'""L voi1CJ9e tllverfer Cll"cuit
"pt5 wers dself" f 

Figure Ll1.13: Voltage inverter: negative v0ut from positive VIN 

It provides only a small current output, as you can confirm by loading it. 

2. I hankS to two undergraduates tor showmg us thiS techmque: Woli Baum and Tom Killian (1988). 
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11-7 Switched-capacitor Filter 1: built up from parts 

Figure L11.14: Switched-capacitor low-pass filter 

This filter's f 3dB is regulated by the clock rate. This makes it a type convenient for 
control by computer. The Text sets out a general formula for f 3dB of this filter type; given 
the values used here, this formula predicts 

/3dB == (0.03/21t) • /clock 

Try the circuit, and compare its i3dB with the predicted value. Does the filter behave 
generally like an RC filter: does it show the same phase shift atf3dB? DoeshdB vary as you 
would expect with clock frequency? Does the filter fail at the high end of the oscillator's 
range? Do you see feedthrough of the clock signal? 

11-8 Switched-capacitor Filter II: integrated version (Optional: omit if you are short of 
time) 

This integrated filter is more complicated than the one you just built up from parts, as you 
might expect. Integrated switched-capacitor filters are available in several forms. 
Essentially, they are op amp active filters like those described in Chapter 5, except that they 
use switched capacitors to simulate the performance of a resistor, and thus allow control of 
the effective RC, as you saw in 11-7. Some allow the user to determine the filter type. 
The one you will meet here is committed as a low-pass; that makes it easy to wire. It is a 
four-pole Butterworth filter-much like the LC filter you built back in Lab 2. You will use 
it later in this course, in a lab treating analog-digital interfacing. Here we just want you to 
discover how easy to use it is, and how sharp its rolloff. 

Note: Please build this circuit on a private breadboard: you will use this 
circuit again in Lab 21. 

Like your simple switched-cap filter, this one shows an f 3dB proportional to the filter's 
clock rate. That is the feature that later will be especially useful to us (in Lab 21), when we 
will want to vary hdB very widely without rebuilding circuits. 
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Figure Lll.lS: MF4 switched-capacitor low-pass filter (4-pole Butterworth) 
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Build the circuit shown above, using the breadboard TTL oscillator-output to clock the 
MF4. Let the external function generator provide an analog input to the filter: let the 
function generator drive pin 8 directly, bypassing the blocking capacitor (which, for the 
moment, just hangs there, useless; we want to leave it in place so that you can use the MF4 
easily when you return to it in Lab 21). Make sure to add a DC offset to the input signal, so 
that the signal stays between about 1 V and 4V. 

To test the filter, try settingiJdB around 1kHz (f3dB = fclock-fiiteJ50). Feed the filter a sine 
wave: offset the sine to center on 2.5V; keep the amplitude below about 1 V; vary fin from 
far below iJdbB to far above. 

You should be able to see the filter's abrupt roll-off. You will also notice the discrete 
character of the filter's output: the filter output shows "steps" rather than a smooth curve. 

Two optional filter tests,for fun: 

a) Peel away frequency components of a square wave 

As you know from your experience in compensating scope probes, you can get a portrait 
of a circuit's frequency response by feeding the circuit a square wave rather than a swept 
sine. Try this: feed your filter a square wave at around 100Hz, and take /clock gradually 
down from its maximum. Can you make out the frequency component 3 X /square• shortly 
before you strip the square wave down to its fundamental sine? 

b) Fancier demonstration of controllableiJdB (for the energetic) 

The prettiest picture of the filter's performance appears if you sweep the input frequency, 

and watch the effect of varying/clock to the filter. / 3dB should be variable over a wide range: 
up to about 2kHz if you use the breadboard oscillator as its clock; up to nearly 10kHz if 
you use a higher clock rate from an external oscillator. 

Is feedthrough of the chip's clock noticeable at the output? Can you confirm the steep 
rolloff that is claimed: 24dB/octave? 
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Ch. 3 Review: Important Topics & Circuits 

1. Generally 

a. PETs vs Bipolar 

b. FET mechanism: a peek within 
helps one distinguish-

i. depletion-mode (includes all JFETs) versus enhancement mode 
(this is the usual form for MOSFET switch) 

ii. JFET versus MOSFET 
JFET better as input stage of op amps; good for current sources 
MOSFET better as switch; universal in logic, where CMOS (p
and n-channel types combined) is most elegant 

2. Important Circuits 

a. Follower 

i. Characteristics: versus bipolar follower: 

1. Rin;Zin 

2. attenuation 

3. Rout 

b. Current Source 
Can be simple (2-terminal); also nice when combined with op amp 

c. Variable Resistor 

d. Switch 

i. power 
Zin: gigantic at DC; but considerable Cin (See FET lab II, Lab 11: 
power switch exercise) 

ii. analog 
applications 

1. sample & hold 

2. multiplexer 

3. switched-capacitor filter 



acquisition time 

body 

charge injection 

depletion mode 

droop rate 
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Ch.3: Jargon and Terms 

of sample-and-hold: time to 'acquire' input: that is, to let voltage on 
storage capacitor come adequately close to V in· 

in a discrete MOSFET (not an I C) this is the semiconductor material 
in which the channel is formed. Must be kept back-biased or zero
biased with respect to both drain and source. 

of sample-and-hold: quantity of charge transferred to FET drain 
(switch output) when transistor or switch is turned ON or OFF. 
Expressed in Coulombs. 

common-source input capacitance: FET capacitance seen from gate: 

Figure JR3.1: C;,,: input capacitance 

common-source output capacitance: FET capacitance seen from 
drain: 

Figure JR3.2: C055 : output capacitance 

class of FETs that are fully ON until a voltage at gate (Vas) begins 
to tum the transistor OFF. Includes all JFETs and occasional 
MOSFETs. 
said of sample and hold: rate at which voltage on storage capacitor 
departs from original stored value (/1 V//1t). 

enhancement mode class of FETs that are OFF until Vas begins to turn the transistor 
ON. Includes most MOSFETs, no JFETs. 

feedthrough 

lnss 

JFET 

latch up 

linear region 

of analog switch: extent to which signal passes through an OFF 
switch; usually expressed in dB of attenuation. 

drain current that flows when gate is shorted to source: maximum 
current for a JFET. 

junction FET: gate forms a P-N junction with channel (never to be 
forward-biased). Always depletion mode (ON until turned OFF.) 

pathological condition in which excessive current at input of a FET 
device (excessive current usually caused by excursion of input 
beyond a supply rail) causes the device to pass a large current from 
supply to ground. Destructive. 

region of FET operation, defined by magnitude of V05, where In 
varies approximately linearly with V vs (that is, the FET behaves like 
a resistor). Obtains where V05 is small (<CVas- VT)). 
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MOSFET 

sample-and-hold 

saturation 

substrate 

Ch.3: Jargon & Terms JR3-2 

metal-oxide-semiconductor FET: gate is insulated from channel (by 
"oxide:" Si02). 

Drain-source resistance of FET that is fully ON. (Assumes operation 
in linear region: Vns small.) 

(= 'track-and-hold'): circuit that stores and holds a voltage, 
'sampled' from a changing input. 

region of FET operation, defined by magnitude of Vns• where In is 
determined by V GS (FET behaves like a current source). Obtains 
where Vns not small (>(VGs- VT)). Caution: this sense is not 
related to 'saturation' of either a bipolar transistor or an operational 
amplifier. 
In a FET built on an IC, refers to semiconductor material on which 
several transistors are built. Circuit designer is obliged to keep this 
substrate back- or zero-biased with respect to drain and source. (See 
fig. 3.5, p. 117 .) In a discrete FET, ="body." 

transconductance (gm) 

Vp 

characteristic describing FETs gain: M 0 uJ>er 11 V in· Conventional 
units are Jlmhos 
or Jl.S (mho= ohm-1), equivalent to "Jl.AN," which unfortunately is 
rarely used. No direct equivalent in bipolar transistor characteristics, 
but 1/gm is exactly equivalent to the bipolar transistor's 'e· 

extent to which applied gate-source voltage exceeds threshold 
voltage. This is the quantity-not V GS itself-that determines FET 
behavior, as V8E determines the behavior of a bipolar transistor. 

pinch-off voltage (also called V GS(oro): V GS at which a JFET turns 
OFF. The definition of OFF is arbitrary: 2N5485, for example, uses 
In= lOnA as 'off' current. 
threshold voltage: V GS at which a MOSFET begins to turn ON. The 
definition of ON and OFF is arbitrary: some small current defines the 
boundary. See V p, above. 



Topics: 

• old: 

• new: 
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Chapter6 

Class 12: Voltage Regulators 

a voltage regulator is "just" {voltage reference + high-current op amp 
follower} 

regulator chips 

+ 723: an old regulator that reveals what goes on in any regulator 

+ 3-terminal regulators: easy to use: 

• fixed: 78xx 
• variable: 317 

'crowbar' overvoltage protection 

switching regulators (very briefly) 

Voltage Regulators 
One could argue quite plausibly that this is not a topic in its own right; it is only one more 

application of negative feedback, and could fit quite well into the op amp chapter. Isn't a 
regulator just a follower driven by a reference? 

Bi.J 
Transisfor 

Figure N12.1: Voltage "regulator'' 

Yes, it is. But this function is needed so often that specialized chips have evolved to do just 
this job, so that one almost never does use an op amp. And power supplies and their 
regulators are so universal in instruments of all kinds that the Text assigns them a chapter of 
their own, and we follow this scheme, giving them a day in the lab. 

Here is an early regulator chip, still useful as an introduction to the subject, because it 
includes nearly all the elements of a standard voltage regulator, and makes these elements 
apparent: it brings out many of their terminals to the IC's pins, so that one is obliged to 
understand what's going on within the chip to apply it properly. This is the 723: 
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Text sec. 6.02, 
fig. 6.4, p. 310 

Yin 

Co mpen sati on 
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Figure N12.2: 723 regulator 

The more fully-integrated regulators, which we will look at in a few minutes, make their 
innards less evident, since they do not oblige you to take care of so many pins. Once you 
have done this lab exercise, you are not likely to use a 723 again: it calls for too much 
thought, and-more important-too many external components. 

Note the current-limiting scheme: Qlimit keeps an eye on the output current, and begins to 
pull current away from the pass transistor if the output current grows too large. The same 
trick is used to protect the output stage of op amps. You will recognize the current limit in 
the output stage of the LF411, for example, below: 

(Full '411 circuit appears 
in Notes on Op Am Innards.) 
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Dropout Voltage 
Text sec. 6.02, p. 309, 
sec. 6.03,p.311; 
6.18 (low dropout), pp. 345-49 

Class 12: Voltage Regulators 

·Output of 
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Figure N12.3: Current limit in an op amp: LF411 uses 723's trick 
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Any regulator of this type ("linear," rather than the "switching" type that you will meet 
below) needs some difference between input and output voltage. This is called the "dropout 
voltage," because the output drops out of regulation if you don't fulfill this requirement. 

Most regulators need two to three volts; specialized low-dropout regulators can get by on 
a few tenths of a volt. The 723 makes another demand, annoying if you are designing a 5-
volt supply: its rather high reference (7.15V, typical) requires a supply of 9.5V; that's 
unusual. Usually you need worry about only the two or three volts' difference between Vin 

and vout· 
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Easier: 
Now that you have paid your dues by examining the 723, we'll let you consider some 

regulators that are much easier to use. 

Fixed Output: 78xx 
Text sec. 6.17 

That whole circuit- 723 and discrete components-plus somewhat more, is now available 
on one chip. The simplest of these regulators, the three-terminal fixed-output type, are 
embarrassingly easy to use: 

•5V 

0.01 I"' F }.r Provides short- ferm 

I 
<eramic smoofhinj (fdsfer than 

feedback c.an respond 

7 

fo transient load ch~nJes) 

Figure N12.4: 3-terminal regulator 

They limit not only their own output current but also their own temperature. Such a thermal 
shutdown protects the regulator when not current alone but power is excessive (you'll 
demonstrate this protection in the lab: how?) It also protects you against the effects of 
inadequate heat sinking. 

Variable Output: 317 
Text sec. 6.17, 6.18, 6.19, 
fig. 6.38, p. 355 

In 

The 317 is almost as easy to use as the simpler 78L05, and is more versatile: it allows you 
to adjust Vout· It can also be used to rig up an easy current source. 

It likes to hold a constant voltage (1.25V) between its two output terminals (it uses no 
"ground" terminal). 

'377 

ilzN IIV 

out 
_j 

Figure N12.5: 317: adjustable regulator 

1A 
current 
sou..rce 
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Wrinkles 

Crowbar 
Text sec. 6.06 
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Here's a circuit that shuts down the supply (clamps it to about zero volts) when the 
voltage climbs too high. (IC's are available to do the voltage sensing, too.) 

Text sec. 6.06, 
Jig. 6.8, p. 318 

JN 
752 
(S.bV) 

JOOil 

A 
SCR 

WAen V cl,·m6s a.6ove :zS V, 
+he 2ene,. be3 ins fo condud; 
"'hen abouf 0.6 V apfears 
acro55 the JOO..!L , +he SCR 
'fires : t~rns on, shorfin:J 
VRo!l to 3rounJ. 

Figure N12.6: Crowbar over-voltage protection 

The word "crowbar" apparently refers to the image of someone (courageous? foolhardy?) 
shutting down a huge power supply by shorting it to ground with a massive piece of steel. 

Paralleling Pass Transistors 
Text sec. 6.07, 
compare fig. 6.11, p. 321 
with fig. 6.16, p. 324 

If you need a high output current-higher than what's available from the power transistor 
that you want to use-you can put the pass transistors in parallel. But when you do that, 
remember to prevent one over-eager bipolar transistor from trying to pass all the current: 

'tO V 
3A 

IRF l't3 Q1 

.120 \N' 
toia/ heat 

sink 

Figure N12.7: Paralleling pass transistors: FET's do it neatly; bipolars less neatly 

c 

E 

Remember why the emitter resistors are required? Remember why FET's need no 
equivalent resistor? 
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A Different Scheme: Switching Regulators 
Text sec. 6.19, 
fig. 6.39, p. 356 

These show one great virtue: they do not gulp power as they step voltage down. You can 
convince yourself with a few seconds' thought that the transistor switch that is either fully 
ON or fully OFF ideally lets the regulator dissipate no power at all. Consider the two cases: 

Text sec. 6.19, 
p. 357, ex. 6.8 

VIN VIN 

I 
I I 

SWIITCH OPEN 
I 

5W'ITCH CLOSE"D 

V across re_gu idfor BlG } Pswitch \ V across re_gu.lafor : zero} Pswdch 
I zero =0 I : BI& :::0 

I 

I 
Figure N12.8: Idealized switching regulator: On or Off: zero voltage or zero current 

In fact a complete switching regulator typically runs at 75% to 90% efficiency, not 100%, 
but pretty good. You can answer without picking up a pencil the Text's question, 'What is 
the best efficiency you can hope for from a linear 5-volt regulator whose input is kept at 
12V? (a little high, but only a little, since we need to make sure the regulator doesn't drop 
out). 

A switcher can also step a voltage up, or can change the sign of a voltage input-or can 
do both at once. Those tricks are useful for generating a local source of an oddball voltage, 
in a computer powered with +5V only. 

The scheme is to vary the duty cycle of a waveform that squirts charge into a storage 
"tank"-inductor feeding cap. At high currents, switching makes good sense. Below is a 
step-down type. 

Text sec. 6.19, 
fig. 6.40, p. 357 

Diode leis current coni inue 
to flow, when switch is off 

..--..:-:..-...rvm-~- ~ YovT (<VI") 

I 

inp<.d w.rr. 0- _A_!L__A_ 

indue. curr 0-~ 

Figure l'\12.9: Switching regulator: waveforms (the feedback circuitry that carries out the regulation is omitted) 
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The basic pattern is simple: the switch closes, causing current to begin flowing through the 
inductor, simultaneously charging the capacitor. When the switch opens, the energy stored 
in the inductor (l/2LI2) is transferred to the capacitor, further raising its voltage (or 
diminishing its droop, if it is heavily loaded, as suggested in the waveforms shown above). 
Note, by the way, that though the output ripple may seem to resemble that in a linear 
supply, the ripple frequency is much higher: 20 to 100 kHz, versus 120Hz for the linear 
supply. Some of that high-frequency junk on the line will persist after even the most careful 
filtering. So you may choose a linear supply when you need to feed a device that dislikes 
noise. 

Text sec. 6.19, 
p. 661 !f. 

For digital devices, which shrug at low-level noise, switchers are the right choice. 
See, for example, the computer switching supply that the Text analyzes in detail. 
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Lab 12: Voltage Regulators 

Reading: 

Problems: 

12-1. The 723 Regulator 

Chapter 6.01-6.19 
Don't exhaust yourself on the 

interesting but difficult details of the lab bench 
supply (fig. 6.16) or the Tandy switching 
regulator (fig. 6.46) 

Problems in text. 
Additional Exercises. 
Bad Circuits (all these bad circuits are good 
and bad, this time!) 

You are not likely to take the trouble to use the 723 in practice, now that more fully
integrated regulators are available. But this 723 circuit shows many of the elements 
standard to any regulator: a "pass" transistor, controlled by an operational amplifier; a 
voltage reference; current limiting. 

Vin _ _.,_ ____ _, 

~---, _,u.A'723 
Vc !) ("DIP" case) 

41TNV 
I 

u:z 
I 
I 

' COMP V- cs I ·----1-3- _____ '1 ____ 3 ______ , 27.11. 

~-------~~-----------~~.---Vout 

Figure Ll2.1: 723 voltage regulator IC 

Feed the regulator from the variable regulated power supply. Watch how Vout varies you 
adjust Vin from 0 to around 20 volts. Can you identify the regulator's dropout voltage? 
Does it match what the data sheet promises? That question is a little ambiguous in this case: 
the 723's dropout voltage is more complicated than usual: its dropout voltage in the usual 
sense-the minimum difference required between input and output voltages-is not what 
will define the minimum input voltage. The 723's dropout voltage of 3V would suggest that 
the input could fall as low as 8V. Instead, you will see the effect of a slightly different 
characteristic, the minimum input voltage required to keep the 723's voltage reference 
running properly. That minimum input is specified at 9.5V. Most regulators do not bother 
you with this distinction; dropout voltage is just the minimum voltage drop across the 
regulator, period. 

Connect the lk potentiometer as variable load, and see how Vout is affected. What should 
the maximum output current be? Measure it. 
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Ripple Rejection 

Figure L12.2: Ripple rejection test circuit. Note use of "center-tap" connection to obtain 3.2Vac 
To test the circuit's ripple rejection, connect a 6.3Vac transformer in series with the 

variable DC supply, as in the figure above. (Notice that you are adding half that 6.3v as 
ripple.) The 33 ohm resistor and diode are included to prevent damage in case Vin is 
accidentally shorted to ground; this sort of connection easily blows things out. 

First, check out this test circuit by connecting a 2.2k load resistor to ground and looking 
at the waveform (DC plus 60Hz ripple) at its output. Note that you must keep the DC level 
high enough so that the ripple voltage does not fall below the dropout voltage; otherwise 
you will find yourself watching dropout rather than ripple. 

Compare the amplitude of the ripple going in and coming out of the regulator. On the 
output side you may want the extra sensitivity you can get with a BNC cable rather than xlO 
scope probe: this is one of the rare cases where the probe is not preferable. Even with the 
"xl probe" you are likely to find this amplitude hard to judge; the surviving ripple is very 
small, and gets mixed with other low-level noise, probably including junk on the ground 
line. Is the ratio ofrippleout to ripplein close to the manufacturer's promise of -74dB? Does 
a 4.7 11-F cap on the Vref terminal add 12dB as the data sheet promises? 

12-2. Three Terminal Fixed Regulator 

in 
ovt gnd 

Figure L12.3: 78L05 3-termina!S-volt regulator 
This device is embarrassingly easy to use. It is so handy, though, that it's worth your 

while to meet it here. 

It protects itself not only with current limiting, but also with a thermal sensor that 
prevents damage from excessive power dissipation (/out[Vin -VoutD• which could occur even 
though the current alone remained below the limiting value. You will watch this thermal 
protection at work, and incidentally will see the effect of heat sinking upon the regulator. 

Watch this thermal protection by providing a load that draws less than the chip's 
maximum current of 100 rnA. Use two 120-ohm resistors in parallel to ground. (Check, 
with a quick calculation, that you are not overloading these 1/4-watt resistors.) 
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Figure L12.4: 78L05: demonstration of thermal protection 

L12- 3 
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Note: we suggest you stack the variable supply on top of the breadboard's fixed + 15V 
supply. This scheme requires that you float the "negative" (black) terminal of the variable 
supply; that terminal must not be tied to world ground. 

To make this demonstration worthwhile, you should try to predict what voltage across the 
regulator will bring on thermal limiting. That is not at all hard, though it might take you a 
while to dig the information out of the data sheet (see Analog Data Sheets; and see Text sec. 
3.04). You will notice that the thermal specifications state a maximum permissible junction 
temperature and give the thermal resistance between junction and ambient, which in this 
case means both the ambient air and the circuit board to which the regulator's leads are 
attached. You will be using the T092 package-plastic-which dissipates substantial heat 
through its leads (even the length of these leads matters, you'll notice). 

To calculate the maximum power the package can dissipate before overheating the 
junction, plug in the values you find below. 

78L05: Thermal Specifications 
Package 

T0-39 
T0-92 
Defmintions: 

Typical Max 
8JC 
40C/W 

Typical 
8JA 
140C/W 
180C/W 

Max 
8JA 
190C/W 
190C/W 

8Jc = thermal resistance, junction to case 
9 1A = ... junction to ambient: includes JC and CA (case to ambient) in scric 

Assume that the device begins to limit when its junction temperature reaches about 
150°C-but don't be shocked if your calculation indicates the device may be tolerating a 
higher temperature, perhaps as high as 200°. Note units of thermal resistance, 8: oc I 
Watt. 

Experiment: Dropout Voltage and Thermal Self-Protection 

Gradually increase Vin from close to OV. Note, as you proceed: 

• The dropout voltage; then 
• The Vin that actually evokes the chip's thermal self-protection. 

By the way, what does the chip do to limit its power dissipation? How will you know when 
the chip has begun to take this protective action? 

When you notice the chip limiting its own power dissipation, you will be able to call off 
this self-protection by cooling the chip. Try putting a bit of wet tissue paper to the 78L05's 
fevered brow. It should recover at once. Then try a push-on heat sink, instead. 
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Figure L12.5: Push-on heat sink for T092 package 

You may have to crank up Vin to see the self-protection begin again. Now fan the 
regulator, or blow on it. Does the output recover, once more? 

12-3. Adjustable Three-terminal Regulator: 317 
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This regulator allows you to select an output voltage by use of two resistors. You can 
make a variable output supply by replacing one of the two resistors with a variable resistor. 
The 317lets you stock one chip to get all the positive supplies you need (at least, up to 1A 
output current); it also lets you trim to exactly 5V, for example, if the 78L05's 5% tolerance 
is too loose. In addition, the 317 is easy to wire as a current source. 

In other respects this regulator is much like the 78L05: it includes both current and 
temperature sensing to protect itself from overloads. 

Wire up the circuit in the figure below. Try R = 750 ohms; what should Vout then be? 
Measure it. 

317 
OUTf----=-f--+--+Vout 

> + ~ ~ 14.'1;--F 

....._ _ __,_ .J ;y 
-; 

out 
ad j . 

+Vin ---+--liN 

ADJ' 

240 

tn 

7 ''ro-39''ca.se 
Figure L12.6: 317 voltage regulator circuit 

Replace R with a 1k pot, and check out the 317 's performance as an adjustable regulator. 
What is the minimum output voltage (R = 0)? 
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12-4 Three Terminal Regulator as Current Source 

317 

+ 
4.7,uF I 

Figure L12.7: Simple current source made with a 3-terminal regulator 

As you know, the 317 maintains 1.25V between its out and adj pins, with very low 
current at the adjpin. Thus the "poor man's current source," above. Try it out. What 
should the output current be? Check its constancy as the load resistance is varied. How 
does the circuit work? What limits its performance at extremely low or high currents? 
What is its voltage compliance? 

12-4 Voltage References 
Here we will ask you to look again at a zener diode, a device that, as you know, can 

provide a voltage reference. It works, but not very well: as current varies, Vzener varies a 
good deal; in conventional jargon "its knee is quite soft." 

3v 

f 10"'V~ I 
!5 

t'3.3v z.enet-'' 
dtode. 

1. 2v 1N7~" ., / .forOJarcl 
Ql 

.-{Scole o~ "" Condudio" c "' "' LeH :t: 
N g 

"' 5rnV "" U' c- v :z. tv ~ ...... 
'-" 
"' "' l: 
..J 

o ... v 
10~ 100J'A 1M A 10mA 

z~ner {or ref) curnnt 

Figure L12.8: Zener's soft knee contrasted with IC voltage reference ('bony knee?'); curves in figure on left show detail of 
knee region; note that vertical scale for the IC reference is expanded by a factor of 250 relative to the ordinary zencr! 

You can work around that weakness of the zener by biasing it with a current source rather 
than resistor. Still you would be stuck with its sensitivity to temperature changes. 

An integrated voltage reference does much better than a bare zener, as you might expect. 
Here, we ask you to test a bare zener against an IC 'zener,' an LM3851: 

1. We put zener in quotes because the 385 is much more than just a zener; it's quite a complicated circuit, as you can conf1rm by 
glancing at the schematic shown in the 385's data sheet (not in these notes; see a National Linear data book). 
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you will vary the current over 3 decades and watch the variation in voltage that results, for 
each of the two 'zeners.' Here's the setup: 

Zol'A 
aoo_..uA 
z,.,A 
ao .... A 

62ok R 
.!:.._ } +15v 

~2.k 
G;.2.k 
~Zo..Q 

zener d,ode: 1N71.jb 1) 
IC. "zen<:?r ": LM385-2.5J 

7 

+ 
\no connech~~ 

("NC") 

Figure L12.9: Circuit for measurement of variation in Vout with variation in current 

12-5 "Crowbar" overvoltage protection 
Here's a little circuit that can protect against the potentially horrible effects of a power 

supply failure, by clamping the supply voltage close to ground in case that voltage exceeds 
some threshold. Here, we have set the threshold around 6 volts: about right as the start of 
danger in a 5-volt supply (we chose 5 volts because it is the standard computer supply 
voltage). After your view of the zener' s knee, you will recognize that this circuit gives us 
only approximate control of the threshold. You might prefer, in practice, to use an IC 
overvoltage sensor (some of these include the SCR, as well). 

variable 
de. 

suppl~ 

+ 

1N 
'!52. 

(5.t,v) 

Figure L12.10: Crowbar circuit, and pinout of SCR: "G" =gate; "K" =cathode; "A"= anode 

The silicon controlled rectifier (SCR), shown above, is a device you have not seen before 
in these labs. It behaves more or less like a transistor: to turn it on, you need to provide 
some current at its gate, which will accept current if you bring its voltage up to around 0.6V 
above the cathode; the SCR differs from a transistor in latching itself ON once it begins to 
conduct. To turn the device off, you must stop the flow of current by some external means: 
in this circuit, by shutting off the power supply. Evidently, the SCR is well-suited to this 
application: trouble turns it ON; only someone's intervention then can revive the power 
supply. Note that the crowbar does not shut off if the supply voltage simply attempts to 
revert to a safe level, such as 5V in the present case. 

In a practical circuit, you would add a capacitor to ground at the SCR's gate, to protect 
against triggering on brief transients. Today, your power supply-which powers nothing 
but this protection circuit!-should be quiet, so we have omitted that protection capacitor. 

Try the circuit by gradually cranking up the supply voltage, using either an external 
variable supply or the breadboard's JSV supply, which (on the PB503) is adjustable with a 
built-in potentiometer. (You'll need a skinny screwdriver; the adjustment pot is recessed at 
the very top of the breadboard's top panel). When you finish this experiment, incidentally, 
you'll probably want to set the breadboard's adjustable supply back to+ 15V, since you're 
likely to expect that voltage next time you use this supply. 
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crowbar 

dropout voltage 

SCR 

slow-blow fuse 

Ch.6: Jargon and Terms 

ovexvoltage protection circuit: shorts supply output to ground when 
excessive voltage is detected; remains shorted until reset if done, as 
usual, with an SCR (see below). 

minimum required voltage difference between input and output of 
voltage regulator: failure to maintain input voltage high enough to 
provide this voltage difference will cause the circuit to "drop out of 
regulation." 

silicon controlled rectifier: a three terminal power switch roughly 
resembling a bipolar transistor, but with the property that once 
triggered it remains ON until its current falls to nearly zero. 

fuse with long thermal time-constant, designed to ignore transient 
currents like those that occur on power-up as filter capacitors take 
initial charge ("inrush current"). 
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CHAPTERS 

Cbs. 8 & 9: Digital Electronics: Overview 

Digital electronics is so sharply different from analog that it can be studied separately: 
some courses begin with digital, hoping that it can stand on its own. Only later do students 
Jearn what is happening inside the little black boxes that they have been stringing together. 
This view has obvious merits: digital is easier; its fundamental virtue is precisely its 
indifference to the details of signals. So, layout can be sloppy, one can watch many circuit 
operations without use of a scope. And anyone can get impressive results from a highly
integrated digital IC. 

We have chosen to introduce you first to analog electronics so that, instead, you can begin 
digital with some sense of what the ICs that you use are doing. Most of the time you do not 
need any such detailed understanding, and all of us revert to the black box view of digital 
devices, and then look more closely only when strange things begin to happen-when a 
CMOS input is left floating, for example. On those occasions, it is useful to know some 
analog electronics. The digital ICs are of course made up of transistors (mostly MOSFETs), 
the devices you have just spent considerable effort to understand. You will be rewarded, 
though perhaps not daily. 

We have called digital "easy," and in a sense it is: you will not need a calculator, or 
calculus. But some students find the subject difficult in another sense: it lacks coherence. 
In the analog half of the course, some issues and circuit fragments occurred over and over: 
impedances (can A drive B?); frequency-response; RC circuits (sometimes explicit, 
sometimes formed of stray elements, as in Miller effect and nasty oscillators). At the end of 
Chapter 8, in contrast, you may feel that you have been asked to learn a long list of gadgets. 
If one likened this course to an introduction to a foreign language, then analog would show 
some structure-rules of grammar, perhaps; Chapter 8 might feel like a vocabulary drill. To 
some extent it is also literally a vocabulary drill: digital electronics, even more than analog, 
is riddled with jargon: "3-state," "flip-flop," "ripple counter," "one-shot" .... 

We hope that the microcomputer labs will draw all this information together for you-as 
we said in the Preface to this book. Then the digital devices may fall into functional 
categories for you: gates combine signals to make this and that happen; flip-flops store 
information that otherwise would slip away; and so on. 

As you read these two chapters you will need more than your usual skill in picking the 
important from among the arcane detail. Especially in Chapter 9 you will find much 
information that is invaluable to a practitioner-someone who wants to design a serial 
interface, for example-and excessive for a student in a first course. Look to the laboratory 
reading assignments for guidance here, and-as always-look at the lab exercises 
themselves to see which circuits have been picked out as most important. 

Finally, try for a few minutes-before you get immersed in the details-to appreciate 
how curious the binary digital scheme is: if someone had proposed this arrangement to you 
in, say, 1930, what would you have thought? 'Turn voltages into codes; discard all delicate 
analog electronics-even including the wonders of feedback-and reduce every circuit to a 
crude switch that is simply ON or OFF.' Would you have said, 'Hey, that's a winning idea. 
I'll bet it takes over electronics'? --or would you have said, 'That's a harebrained 
mistake'? 
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When some better scheme is devised, we may look back on binary digital as harebrained; 
for the moment, it is extremely useful, and you will be pleased to see what powers it gives 
you: far beyond what you were able to do with a few weeks' worth of analog electronic 
learning. When microprocessors enter, then you will become powerful indeed. Much fun 
lies ahead. 
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Class 13: Digital Gates; Combinational Logic 
Topics: 

• old: 

a comparator like a '311 resembles a digital gate 

• new: 

Why digital? 
number codes: two' s-complement 

Just 3 functions to build any (binary-) digital circuit 
and 'universal gates' make things simpler still: just one gate type can build 
the world 
'active' levels: sometimes low is defined as true. 
'assertion-level symbols' express this circumstance graphically 
What's in a gate? 

+ Two important types: TTL (bipolar), and CMOS 

+ logic with CMOS 
+ output types: passive pullup, active pullup, 3-state 

1. Analog versus Digital 

What does this distinction mean? 

Distinguish "digital" (the more general and more interesting notion) from "binary." 
A binary logic gate classifies inputs into one of two categories: the gate is a comparator: 

+5V 

t'n. -?-ovt 
~ 

Figure Nl3.1: Two comparator circuits: digital inverter explicit comparator, roughly equivalent 

The digital gate resembles an ordinary comparator (hereafter we won't worry about the 
digital/binary distinction; we will assume our digital devices are binary). 

How does the digital gate differ from a comparator like, say, the LM311? 

Input & output circuitry: 

Speed: 

The 311 is more flexible (you choose its threshold & 
hysteresis; you choose its output range). Most digital gates 
include no hysteresis. 
The logic gate makes its decision (and makes its output 
show that 'decision') about 20 times as fast as the 311 
does. 
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Simplicity: 

Class 13: Digital Gates; Combinational Logic N13 -2 

The logic gate requires no external parts, and just power 
ground and In and Out pins. Typically comes 6 to a 14-pin 
package. 

But why bother with digital? 

Sub-questions: 
A. (Naive query:) Is This Transformation Perverse? 

Is it not perverse to force an analog signal-which can carry a rich store of information 
on a single wire-into a crude binary High/Low form? 

+5 

M 
Sound of Sound of chear, 

arcade 3a1nef Sfradtvar,.us 

Figure N13.2: Naive version of "digital audio": looks foolish! 

Disadvantages of Digital: 

Complexity: 
Speed: 

Advantages of Digital: 
·rext 8.01 

more lines required to carry same information 
more time to process the numbers that encode the 
information 

Noise Immunity: Signal is born again at each gate; 
from this virtue flow the important applications of digital: 

Allows Stored-Program Computers (may look 
like a wrinkle at this stage, but turns out, of 
course, hugely important); 

Allows transmission and also unlimited processing 
without error--except for round-off/quantization: 
deciding in which binary bin to put the 
continuously variable quantity; can be processed 
out of "real time:" at one's leisure. (This, too, is 
just a consequence of the noise immunity already 
noted.) 

B. Can we get the advantages of digital without loss? 

Not without any loss, but one can carry sufficient detail of the Stradivarius' sound using 
the digital form, by using many lines: 
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Figure Nl3.3: Digital audio done reasonably 
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C. Digital Processing makes sense, more obviously, when the information to be handled 
is digital from the outset. 
Best examples: numbers (e.g., pocket calculator) & words (word processor) 

\1\/ -j 

~ 
~0 -~YBO~RD 

HvMAN ~ ~~npvt 
(fane; A/D) d~vice) 

COMPVTER. 
(Mores 

&SLJrts) 

Figure N13.4: Example of all-digital system 

Since the information never exists in analog form (except perhaps in the mind of the 
human), it makes good sense to manipulate the information digitally: as sets of codes. 

2. Number codes: two's-complement 
Binary numbers may be familiar to you, already: each bit (= "binary digiit") carries a 

weight double its neighbor's: 
Text sec. 8.03, DECIMAL BINARY 
p. 474 

101- /01 10° 2.? 21 '2.0 

z. 1 3 1 0 1 

2.00 f 10 1- 3 = 213 4 1- 0 f 1 " ~0 
Figure N13.5: Decimal and binary numbers: each binary digit carries twice the 'weight' of its neighbor to the right; 

each digital digit carries 10 times the weight of its neighbor to the right 

That's just analogous to decimal numbers, as you know: it's the way we would count if we 
had one finger. The number represented is just the sum of all the bit values: 1001 = 23 +2° = 
910. 

But 1001 need not represent 910. Whether it does or not, in a particular setting, is up to us, 
the humans. We decide what a sequence of binary digits is to mean. Now, that observation 
may strike you as the emptiest of truisms, but it is not quite Humpty Dumpty's point: we are 
not saying 1001 means whatever I want it to mean; only that sometimes it is useful to let it 
mean something else. In a different context it may make more sense to let the bit pattern 
mean something like "turn on stove, turn off fridge and hot plate, turn on lamp." 



286 Class 13: Digital Gates; Combinational Logic N13-4 

And, more immediately to the point, it often turns out to be useful to let 1001 represent not 
910, but a negative number. 

Text sec. 8.03, 
pp. 476-77 

The scheme most widely used to represent negative numbers is called "two's
complement." The relation of a 2's-comp number to positive or "unsigned" binary is 
extremely simple: 

the 2's comp number uses the most-significant-bit (MSB)-the leftmost-to 
represent a negative number of the same weight as for the unsigned number. 

So, 1000 is +8 in unsigned binary; it is -8 in 2's comp. And 1001 is -7. 

UNS!fiNE/) ;._'<;; (OMP 

1 0 1 1 !I + Z. t 1 = 1110 - 8 f i?. + 1 r -0,0 

0 1 0 1 If t 1 = f)/0 ... = ,.10 

Figure N13.6: Examples of 4-bit numbers interpreted as unsigned versus signed 

This formulation is not the standard one. More often, you are told a rule for forming the 2's 
comp representation of a negative number, and for converting back. This the text does for 
you: 

To form a negative number, first complement each of the bits of the positive 
number ... then add 1.. .. (p. 477) 

It may be easier to form and read 2's comp if you simply read the MSB as a large negative 
number, and add it to the rest of the number, which represents a (smaller-) positive number 
interpreted exactly as in ordinary unsigned binary. 

This may seem rather odd and abstract to you, just now. When you get a chance to use 
2's comp it should come down to earth for you. When you program your microcomputer, 
for example, you will sometimes need to tell the machine exactly how far to "branch" or 
"jump" forward or back, as it executes a program. The machine doesn't want to be told 
"forward" or "back" explicitly; instead, it simply adds the number you feed it to its present 
value; if you feed a negative number (in 2's comp), it hops back. For example: 

~ ·1~111~(4 PAESENr VALVE (Loc•rtoN} } +- F .. , FFFC r b ISPLACefVIIENT BMk !.t 
0 .•. 0 1 0 0 NF-rr VALV£ 

0 ••• 0 1 0 4 r (\fiE II "D 4 -1- 0 ... 0 0 0 4 + 
0 ••• 0 1 0 g NHT VAWE 

Figure N13.7: Example of 2's comp use: plain adder can add or subtract, depending on sign of addend: 68000 branch offset 

Perhaps this example will begin to persuade you that there is an interesting, substantial 
difference between "subtracting A from B" and "adding negative-A to B:" the latter 
operation uses the same hardware as an ordinary addition. That's just what makes this a 
tidy scheme for the microcomputer's branch operation. 
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3. Combinational Logic 

Explaining why one might want to put information into digital form is harder than 
explaining how to manipulate digital signals. In fact, digital logic is pleasantly easy, after 
the strains of analog design. 

Comforting Truth #1 
Text sec. 8.04 

To build any digital device (including the most complex computer) we need 
only three logic functions: 

AND OR NOT 

Figure N13.8: Just three fundamental logic functions are necessary 

All logic circuits are combinations of these three functions, and only these. 

Comforting and remarkable Truth #2 

Perhaps more surprising: it turns out that just one gate type (not three) will 
suffice to let one build any digital device. 

The gate type must be NAND or NOR; these two types are called "universal gates." 

Figure N13.9: "Universal" gates: NAND and NOR 

DeMorgan showed (in the mid-19th century!) that what looks like an AND function can be 
transformed into OR (and vise-versa) with the help of some inverters. This is the powerful 
trick that allows one gate type to build the world. 

deMorgan's Theorem 
Text sec. 8.07, 
p.483 

This is the only important rule of Boolean algebra you are likely to have to memorize (the 
others that we use are pretty obvious: propositions like A+ A* = 1). 

deMorgan's Theorem (in graphic rather than algebraic form) 

You can swap shapes if at the same time you invert all inputs and outputs. 

etc. 
Figure N13.10: deMorgan's theorem in graphic form 

When you do this you are changing only the symbol used to draw the gate; you are not 
changing the logic-the hardware. (That last little observation is easy to say and hard to get 
used to. Don't be embarrassed if it takes you some time to get this idea straight.) 

So, any gate that can invert can carry out this transformation for you. Therefore some 
people actually design and build with NAND's alone. (This is less true now than a few 
years ago, when much was done with discrete gates; these came a few to a package, and that 
condition made the game of minimizing package-count worthwhile; it was nice to have 
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leftover gates that were "universal". Now one is more likely to do a big design on a logic 
array-a programmable array of gates; there the rules of the game are different.) 

This notion of DeMorgan's, and the "active low" and "assertion-level" notions will drive 
you crazy for a while, if you have not seen them before. You will be rewarded in the end 
(the end of this course, in fact), when you meet a lot of signals that are "active low": that is, 
signals that spend most of their lives close to 5 volts, and go low (close to zero volts) only 
when they want to say "listen to me!" 
Active High versus active Low 

Signals come in both flavors. Example: Two forms of a signal that say "Ready": 

Figure N13.11: Active-High versus Active-Low Signals 

Signals are made active low not in order to annoy you, but for good hardware reasons. We 
will look at those reasons when we have seen how gates are made. But let's now try 
manipulating gates, watching the effect of our assumption about which level is True. 

Effect on logic of active level: Active High versus Active Low 
As we considered what "1001" means, we met the curious fact-perhaps pleasing-that 

we can establish any convenient convention to define what the bit pattern means; sometimes 
we want to call 1001 "910;" sometimes we will want to call it "-710." It's up to us. The 
same pattern appears as we ask ourselves what a particular gate is doing in a circuit. The 
gate's operation is fixed in the hardware (the little thing doesn't know or care how we're 
using it); but what its operation means is for us to interpret. 

That sounds vague, and perhaps confusing; let's look at an example Uust deMorgan 
revisited, you will recognize): 

Most of the time-at least when we first meet gates-we assume that High is true. So, 
for example, when we describe what an AND gate does, we usually say something like 

"The output is true if both inputs are true." 
The usual AND truth table of course says the same thing, symbolically. But-as 

deMorgan promised-if we declare that Zeros interest us rather than Ones, at both input and 
output, the gate evidently does something different: 

Truth table Altered description of its operation, appropriate if we treat 0 
as true 

A I! A· I! A I! A· I! 
0 0 0 T T T 
0 1 0 T F T =U--1 0 0 F T T 
1 1 1 F F F 

Figure N13.U: "AND" gate (so-called!) doing the job of OR 'ing Lows 

We get a Zero out if A or B is Zero. In other words we have an OR function, if we are 
willing to stand signals on their heads. We have a gate that OR's lows, and the symbol drawn 
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above says that. It turns out that often we need to work with signals 'stood on their heads': 
active low. 

Note, however, that we call this piece of hardware an AND gate regardless of what logic it 
is performing in a particular circuit. To call one piece of hardware by two names would be 
too hard on everyone. We will try to keep things straight by calling this an AND gate, but 
saying that it performs an OR function (OR'ing lows, here). Sometimes it's clearest just to 
refer to the gate by its part number: 'It's an '08.' We all should agree on that point, at least! 

Here's an example-a trifle melodramatic--of signals that are active low: you are to finish 
the design of a circuit that requires two people to go crazy at once, in order to bring on the 
third world war: 

Figure Nl3.13: Logic that lights fuse if both operators push Fire* at the same time 

How should you draw the gate that does the job? What is its conventional name? 

Just now, these ideas probably seem an unnecessary complication. By the end of the 
course-to reiterate a point we made earlier-when you meet the microcomputer circuit in 
which every control signal is active low, you will be grateful for the notions "active low" and 
"assertion-level symbol." We will be able to explain in a few minutes why control signals 
typically are active low. To provide that explanation we need, first, to look inside some gates. 
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4. Gate Types: TTL & CMOS 
Text sec. 8.07 

CMOS versus 1TL 

N13-8 

TTL-made of bipolar transistors-ruled the world for about 20 years; now its days are 
numbered, as the ad below is meant to suggest (this ad also reminds us how excited someone 
can get about a few nanoseconds: an advantage of a few tens of ns over ordinary CMOS is 
what Zytrex had to offer). 

Text sec. 9.01 

BIPOWl BITES 'IHf DUSt 

Figure N13.14: Reflections on mortality: RIP Zytrex (1985-87) 

Ever heard of Zytrex, forecaster of TTL's doom? Probably not. Sic transit gloria Zytrecis. 
(Is there, perhaps, a moral to this story?) 

Gate Innards: TTL vs CMOS 
Text sec. 8.09, 8.10 

-:-

LS- TTL 

ovt 

NAND 

+S 

-c 
-;' 

CMOS NOT 

Figure N13.15: TIL & CMOS gates: NAND, NOT 

out 
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A glance at these diagrams should reveal some characteristics of the gates: 
Ten sec. 9.06 

Inputs: 
Threshold: 

Output: 

You can see why TIL inputs float high, and CMOS do not. 

You might guess that TIL's threshold is off-center-low, 
whereas CMOS is approximately centered. 

You can see why TIL's high is not a clean 5 V, but CMOS' 
is. 

Power consumption: 
You can see that CMOS passes no current from +5 to ground, 
when the output sits either high or low; you can see that 
TTL, in contrast, cannot sit in either output state without 
passing current in (a) its input base pullup (if an input is 
pulled low) or (b) in its first transistor (which is ON if the 
inputs are high). 

Thresholds and "Noise Margin" 
Text sec. 8.02, 
901,9.02 
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All digital devices show some noise immunity. The guaranteed levels for CMOS and TTL 
show that CMOS has the better noise immunity: 

OUTPUT INPUT 01./TPUT INPUT 

TTL... ("LS') CMOS (''He") 

Figure N13.16: Thresholds & noise margin: TTL versus CMOS 

Curious footnote: as the text points out, TTL and NMOS devices are so widely used that some 
new families of CMOS, labeled 74xCTxx, have been taught TTL's bad habits on purpose: 
their thresholds are put at TIL's nasty levels ("CT" means ".CMOS with ITTL thresholds"). 
We will use a lot of such gates (74HCTxx) in our lab microcomputer, where we are obliged to 
accommodate the NMOS microprocessor, whose output High is as wishy-washy as TIL's. 
When we have a choice, however, we will stick to straight CMOS. 

Answer to the question, 'Why is the typical control signal active low? 

We promised that a look inside the gate package would settle this question, and it does. 
TTL's asymmetry explains this preference for active low. If you have several control lines, 
each of which is inactive most of the time, it's better to let it rest high, occasionally be 
asserted low. This explanation works only for TTL, but the conventions were established 
while TTL was supreme, and they will linger for some time longer, so long as there is some 
TTL and NMOS around. 
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Here's the argument: 

A TTL high input is less vulnerable to noise than a TTL low input 
The guaranteed noise margins differ by a few tenths of a 
volt; the typical margins differ by more. So, it's safer to 
leave your control lines safe most of the time; now and then 
let them dive into danger. 

A TTL input is easy to drive High 
In fact, since a TTL input floats high, you can drive it 
essentially for 'free:' at a cost of no current at all. So, if 
you're designing a microprocessor to drive TTL devices, 
make it easy on your chip by letting most the lines rest at the 
lazy, low-current level, most of the time. 

Both these arguments push in the same direction; hence the result-which you will be able to 
confirm when you put together your microcomputer, where every control line is active low.1 

Output Types 

active pullup 
Text sec. 8.11 

All respectable gates use active pullup on their outputs, to provide firm Highs as well as 
Lows: 

passive active +5 

+5 +5 

_j 

tvMOS CMOS TTL 

Figure N13.17: Passive versus active pull up output stages 

You will confirm in the lab that the passive-pullup version not only wastes power but also is 
slow. 

1. The phrase 'control line' may puzzle you. Yes, we are saying a little less than that every signal is active low. Data and 
address lines are not. But every line that has an active state, to be distinguished from inactive, makes that active state low. 
Some lines have no active versus inactive states: a data line, for example, is as 'active' when low as when high; same for an 
address line. So, for those lines designers leave the active-high convention alone. That's lucky for us: we are allowed to read 
a value like "1001" on the data lines as "9;" we don't need to flip every bit to interpret it! So, instead ofletting the active low 
convention get you down, count your blessings: it could be worse. 
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Open-collector 
Text sec. 8.11, 
,~ .J89,fig.8.21; 
. c·e also sec. 4.23 
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+5" 
I 
I 

' 
::: ~< r· 11·r 

Figure N13.18: Open collector: rarely useful 

293 

Once in a great while "open collector" is useful. You have seen this on the 311 comparator. 

Three-state 

Very often three-state outputs are useful: these allow multiple drivers to share a common 
output line (then called a "bus"). These are very widely used in computers. 

Beware the misconception that the "third state" is a third output voltage level. It's not that; 
it is the off or disconnected condition. Here it is, first conceptually, then the way we'll build it 
in the lab: 

Text sec. 8.11, 
p. 488,fig. 8.19 

ovt 
A 

J3 
shared output Une 

("Du:s") 

c 

+5 

D 

out 

Figure N13.19: Three-State output: conceptual; the way we build it in the lab; driving shared bus 
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Logic with TTL and CMOS 
Text sec. 8.09 

Nl3 -12 

The basic TTL gate that we looked at a few pages back was a NAND; it did its logic with 
diodes. CMOS gates do their logic differently: by putting two or more transistors in series or 
parallel, as needed. Here is the CMOS NAND gate you'll build in the lab, along with a 
simplified sketch, showing it to be just such a set of series and parallel transistor switches: 

Speed versus Power consumption 
Text sec. 9.02, 
p. 569 fig. 9.2 

Figure N13.20: CMOS NAND gate 

The plot below shows the tradeoffs available between speed and power-saving. A few years 
ago the choice was stark: TTL for speed (ECL for the very impatient), CMOS (4000 series) 
for low power. Now the choices are more puzzling: some CMOS is very fast, though TTL 
remains a bit faster. GaAs is fastest. As you can see from this figure, everyone is trying to 
snuggle down into the lower left corner, the state of Nirvana where you get fast results for 
almost nothing. 

oJ~~B 
'-"J•nd: 

"l 
0 CHOS 
e TTL 

'""' 'to • ECL 
<.\.. • 741.. 0 o+h~r 

-l:'>3o 
Ill' 

._.:, 12 0 RTL 

7'tLS '71/xx 
:;:, lo 74HC • • ~ 

0 -{; 
8 

c: 
7'tH <:> ..;:; ~ 7'tFAc-T • 

"' 0 74ALS • 7~5 .,-, 
:t ~ 7'tAC • 74F 

• e 0 
.101( 0...2 7¥AS' Go As 

1ool< • D 0 
0.1 to too 

power (mlll/9>k (<:l 111ijz) 

Figure N13.21: Speed versus power consumption: some present and obsolete logic families 



Ch. 8: Worked Example: Multiplexers 
These notes look at ways to design a small multiplexer in 3 ways: 

• using ordinary gates; 
• using 3-states; 
• using analog switches 

Multiplexing: generic 
Text sec. 8.14, 
p. 495 
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The notion of multiplexing, or time-sharing is more general and more important than the 
piece of hardware called a multiplexer (or "mux"). You won't often use a mux, but you use 
multiplexing continually in any computer, and in many data-acquisition schemes. 

Here's multiplexing in its simplest, mechanical form: a mechanical switch might select 
among several sources. The sources might be, for example, four microphones feeding one 
remote listening station of the secret police. Once a month an agent comes to the house and 
flips the switch to listen to another of the four mikes. The motive for multiplexing, here, as 
always, is to allow sharing of a scarce resource: limit the number of lines needed to carry 
information, and limit the number of snoopers required. 

0 0 0 
0 0 0 
0 0 0 
0 0 

snoor 
s~\e..d 

Figure X13A.l: Mux in mechanical form: to let four sources share one output line 

This case is a little far-fetched. More typically, the 'scarce resource' would be an ND 
converter (see Ch.9, Lab 17). And the most familiar example of all must be the telephone 
system. Without the time-sharing of phone lines phone systems would look like the most 
monstrous rats' nests: picture a city strung with a pair of wires (or even one wire) dedicated 
to joining each telephone to every other telephone! Here's what even a network of 8 phones 
would look like; and here's a computer, sketched with and without multiplexing-which in 
that context is called sharing of a "bus" (you will hear much more of this notion, soon): 
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og-
~ ~ 

\!' V:~;:l 
/~ 

lJ91y c.ornpute.r 

~ ~ 
~ 

8 phones. Yow I 8 phones + sw,tch: better I 
be.tte.r 

Figure X13A.2: Arguments for multiplexing: limit the number of wires running here to there. Two cases: telephone, computer 

Multiplexing: hardware 
A mechanical multi-position switch can do the job; so can the transistor equivalent, a set 

of analog switches. Logic gates, too, can do the job--though these allow flow in only one 
direction, unlike the other two devices. The digital implementation requires a little more 
thought, if you haven't seen it before. 

We need two elements: 

1. Pass/Block circuitry, analogous to the closed/open switch 

2. Decoder circuitry, that will close just one of the pass/block elements at a time 

Let's work up each of these elements, first for the implementation that uses ordinary 
gates. 

Pass/Block An AND gate will do this job, more or less: to pass a signal, hold 
one input high; the output then follows or equals the other input; to 
block a signal, hold an input low. This case is a little strange, 
because this forces a low at the output-not the same as opening a 
mechanical switch. 

A E> 

BLOCK{~ ~ 
PA-:>S {

1
1 

~ 

A·B 51~NAL 

5----i 

A 

Figure X13A.3: AND gate can do the Pass/Block* operation for us 

OUT 
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Joining outputs The outputs of the AND gates may not be tied together: 

X 

y 

Figure Xl3A.4: Don't do this! The outputs of ordinary gates may not be tied together 

Instead, we need a gate that 'ignores' lows, passes any highs (since the 'blocking' AND's 
will be putting out lows). An OR behaves that way. 

So, here's a 2:1 mux made with gates: 

Decoder 

Figure X13A.5: 2:1 mux 

If the mux has more than 2 inputs, we need a fancier scheme to tell 
one and only one gate at a time to pass its signal. The circuit that 
does this job, pointing at one of a set of objects, is called a decoder. 
It takes a binary number (in its encoded form: compact: n lines 
encode 2n combinations, as you know) and translates it into 1-of-n 
form (decoded: not compact, so not a good way to transmit 
information, but often the form needed in order to make something 
happen in hardware). 

The decoder's job is to detect each of the possible input combinations. Here, for 
example, is the beginning of a 2-to-4-line decoder: 

2.- E>IT NUM~ 

Figure X13A.6: 2-to-4-line decoder: block diagram; partial implementation 

Decoders are useful in their own right (you will use such a chip in your microcomputer, 
for example: a 74HCT138). They are included on every multiplexer and in every 
multiplexing scheme. 
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Worked example: Mux (Text problem 8.17) 
Text sec. 8.14, 
ex .. 8.17, p. 496 

Solution 

Decoder 

Problem: 4:1 Mux, designed 3 ways 

Show how to make a 4-input multiplexer using (a) ordinary 
gates, (b) gates with 3-state outputs, and (c) transmission 
gates. Under what circumstances would (c) be preferable? 

All three implementations require a decoder, so let's start with this. 

Xl3A-4 

We need to detect all four possibilities; might as well start, as in the earlier example, by 
generating the complement of each select input. (Does it go without saying that we need 2 
select lines to define four possibilities? If not, let's say it. If this isn't yet obvious to you, it 
will be soon.) 

II 

10 

9,--~-----.-r----~ 

Figure X13A.7: 1-of-4 decoder 

Pass/Block gating 

Ordinary Gates 

00 

You know how to do this job with AND gates. This is the same as before, only we have 
more than the pair we used last time: 

11 10 01 00 

s, --------1 1 - of - + dec.ode.r 
So------1 (as above) 

L----~----------~ 
Figure X13A.8: 4-1 mux, gate implementation 
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Transmission gates 
This is easier. (You do, of course, need to remember what these "transmission gates" or 

"analog switches" are. If you don't recall them, from way back in Chapter 3 and Lab 12, go 
back and take a second look.) 

Again we use the decoder. This time we can simply join the outputs, since any 
transmission gate that is blocking its signal source floats its output, unlike the ordinary logic 
gate, which drives a low at its output when blocking. 

Three-states 
This is a snap after you have done the preceding case. Again use the same decoder, and 

again you can join the outputs. A 3-state that is off, or blocking, does not fight any other 
gate. That's the beauty of a 3-state, of course. 

s,----; 
So-----1 

Question: 

1>3 

decoder 

Figure Xl3A.9: 4-1 mux: transmission-gate and 3-state implementations 

"Under what circumstances would (c) [the transmission-gate implementation] be 
preferable?" 

OUT 

It is preferable only for handling analog signals. (For this purpose it is not just 
preferable; it is required!) For digital signals it is inferior, since it lacks the all-important 
virtue of digital devices: their noise immunity, which can also be described as their ability 
to clean up a signal: they ignore noise (up to some tolerated amplitude), and they put out a 
signal stripped of that noise and at a good low impedance. The analog mux, like any analog 
circuit, cannot do that trick; to the contrary, the analog mux slightly degrades the signal: at 
very least, it makes the output impedance of the signal source worse, by adding in series the 
mux's Ron (around 100!2). 

The analog version, incidentally, can pass a signal in either direction, so it works as a 
demultiplexer as well as mux. But that is not a good reason to use it for digital signals. If 
you want to demux digital signals, use a digital demux! 
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Ch. 8: Worked Examples: Binary Arithmetic 

These worked examples look at four topics in binary arithmetic: 

two's complement: 
addition: 

multi plication: 
ALU & flags: 

versus unsigned, and the problem of overflow 
a hardware design task, meant to make you think about how the 
adder uses carries 

an orderly way to do it contrasted with a foolish way 
foreshadowing the microprocessor, this exercise means to give you 
the sense that the processing guts of the CPU are simple, made of 
familiar elements 

1. Two's Complement 

Here's a chance to get used to 2's-comp notation. We want to underline two points, in 
these examples: 

• A given set of bits has no inherent meaning; it means what we choose to let it 
mean, under our conventions (this is a point made in the class notes, as well); 

• A sum (or product or other result), properly arrived at may nevertheless be wrong 
if we overflow the available range. 

Both of these points are rather obvious; nevertheless, most people need to see a number of 
examples in order to get a feel for either proposition. "Overflow," particularly, can surprise 
one: it is not the same as 'a result that generates a carry off the end.' Such a result may be 
valid. Conversely, a result can be wrong (in 2's comp) even though no carry out of the 
MSB occurs. This is pretty baffling when simply described. So let's hurry on to examples. 

Let's suppose we feed an adder with a pair of four-bit numbers. We'll note the result, 
and then decide whether this result is correct, under two contrasting assumptions: that we 
are thinking of the 4-bit values as unsigned versus two' s-complement numbers. 
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Problem: 2's comp 
Suppose that you feed a 4-bit adder the 4-bit values A and B, listed 

below. As an exercise, please write-

1. the maximum value one can represent in this four-bit result-

• unsigned 

• in 2's complement 

2. the sum; 

3. then what the inputs and outputs mean in decimal, under two 
contrasting assumptions: 

• first, the numbers are (4-bit-) unsigned; 
• second, the numbers are ( 4-bit-) two' s-complement. 

4. Finally, note whether the result is valid under each assumption. 

We have done one case for you, to provide a model. 

IN: A I! A~l! Valid? 

!liru!ry: 0111 1000 1111 
Decimal: 
unsigned: 7 8 15 yes 
2's-c: 7 -8 -1 yes 

!liru!ry: 0111 0111 
Decimal: 
unsigned: 
2's-c: 

!liru!ry: 0111 1010 
Decimal: 
unsigned: 
2's-c: 

!liru!ry: 0111 0100 
Decimal: 
unsigned: 
2's-c: 

!liru!ry: 1001 1000 
Decimal: 
unsigned: 

2's-c: 

Try these. Then see if you agree with our conclusions, set out below: 

301 
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Solution: 

1. The maximum values that one can represent with 4 bits 

• unsigned: 
1510 

• in 2's complement: 
+7w.-810 

2. Sums: overflows 
IN: A I! A~l! Valid? 

llimlJ:y: 0111 0111 1110 
Decimal: 
unsigned: 7 7 14 yes 
2's-c: 7 7 -2 no 

llimlJ:y: 0111 1010 0001 
Decimal: 
unsigned: 7 10 no 
2's-c: 7 -6 +1 yes 

llimlJ:y: 0111 0100 lOll 
Decimal: 
unsigned: 7 4 11 yes 
2's-c: 7 4 -5 no 

Binary: 1001 1000 0001 
Decimal: 
unsigned: 9 8 no 
2's-c: -7 -8 +1 no 

X13B-3 

What's the rule that determines whether the result is valid? For unsigned, isn't it simply 
whether a carry-out is generated? For two' s-comp the rule is odder: if the sign is altered by 
carries, the result is bad. A carry into the sign bit indicates trouble, if there is no carry out 
of that bit, and vice versa. In other words, an XOR between carries in and out of MSB 
indicates a 2's-comp overflow. The microprocessor you will meet later in this course uses 
such logic to detect just that overflow (indicated by its "V" flag, in case you care, at this 
point). You can test this XOR rule on the cases above, if you like. 
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2. Adders 

Text sec. 8.14, 
pp. -+97-98 
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You may find it entertaining to reinvent the adder. Here, to remind you, is the way a 
single-bitfull-adder should behave: 

IN: Cillry A 1i OUT: Cillry Sum 

0 0 0 0 0 
0 0 1 0 1 
0 I 0 0 1 
0 I 1 1 0 

1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

Figure X13B.l: Truth table for a full adder 

Problem: Design a one-bit full adder 

Use the truth table above, if you need it, and design a full adder. Its 
block diagram will look like this: 

CatT~ out 

,..._ 
B- "2 I--SUM 

carr!:! m 

Figure X13B.2: Full adder 

Solution 

The sum is A XOR B when Carry-in is low; it's the complement of XOR when Carry-in 
is high. Does that suggest what the sum function is, as a function of the 3 input variables 
that include Carry-in? Yes, it's XOR of all 3 variables (output 1 if odd number of inputs 
1): 

Figure X13B.3: Sum is Cin XOR A XOR B 
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Carry out? 
You may be able to see the pattern, after staring a while at the truth table. But you can 

also enter the values on a Karnaugh map, and let the map reveal patterns: patterns that 
show chances to ignore a variable or two: 

CouT = A.B + C .. B i" c,,..P..:: AB+ c, .... (A+B) 

Figure X13B.4: Carry-Out K map 

So, here's what a full adder looks like: 

Figure X13B.5: Full Adder 

How the pros do it: 

You may be interested to see the curious ways that IC adders are designed. They don't 
look like our circuit, but they do, of course, perform the same logical operations. See, for 
example, schematics in Texas Instruments data books for 74LS83A and 7482. 

It's pretty clear that once we have defined this single-bit function, with a carry-in and 
carry-out line, we can string these little beads forever, making an adder as big as we like. 
We will encourage you to look for a similarly-repeatable pattern in designing a multiplier, 
below. 

3. Multipliers 
Text sec. 8.14, 
exercise 8.14, p. 493 

Multipliers are much less important than adders; you should not feel obliged to think 
about how multiplication works. Think about it if the question intrigues you. 

One way to discover the logic needed to multiply would be to use Karnaugh maps or 
some other method to find the function needed for each bit of the product. This is the 
method suggested in Text problem 8.14. For example, to design a 2X2 multiplier, you 
would need 2 K maps, each with 4 input variables. 

But even this small example may be enough to convince you that there must be a better 
way. A 3 • 3 multiplier (with its 6 input variables) would bog you down in painful K 
mapping; but larger multipliers are commonplace. Yes, there is a better way. 

This turns out to be one of those design tasks one ought not to do with K maps, or with 
any plodding simplification method. Instead, one ought to take advantage of an orderliness 
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in the product function that allows us to use essentially a single scheme, iterated, in order 
to multiply a large number of bits. The pattern is almost as simple as for the adder. 

Binary multiplication can be laid out just like decimal, if we want to do it by hand-and 
the binary version is much the easier of the two: 

DECTM/tL B INA !I Y BIN ,4R Y, GENETUtL/ZEJJ 

2 :J 1 0 1 az at &a 
X 2 If )( 1 0 1 

Dz 61 ho 
-too 1 0 1 

+ 0 0 D 

"~;"' 
do ho 

-t 1 0 1 
6 0 0 1 1 0 0 1 a,~ b., a,D, 

+ f\&_~th a bz 

Ps ''-~- p3 Pz 7>1 Po 
Figure X13B.6: Decimal and binary multiplication examples-and a generalization of the pattern; binary is easier! 

Once you have seen the tidy pattern, you will recognize that you need nothing more than 
2-input AND gates, and a few adders. With this method, you don't have to work very hard 
to multiply two 4-bit numbers-a task that would be daunting indeed if done with K maps. 
(As the Text exercise suggests, you need only half adders, not full adders; but you might 
choose to use an IC adder Iike the '83, rather than build everything up from the gate level.) 
Let's try that problem. 

Compare Text exercises 
t£ 8-14, AE 8-15 

Problem: 3 • 3 Multiplier 

Design a 3 • 3 multiplier along the same lines [as in AE 
8-14], this time using two 4-bit full adders (74HC83) and 
as many 2-input gates as you need. 
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Solution: 

r-
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r--
1 

1-- - -

--., 

___ ..J 

Figure X13B.7: 3 • 3 Multiplier, using IC adders 
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Whew! There's a circuit you'll want to buy, not build! But you can see that you could 
easily extend this to make a 4 X 4--or 16 X 16 multiplier. 
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4. Arithmetic Logic Unit (ALU) 
fc'XI sec. 8.14, 
,~ .. 98 

Here, as a wrap-up for this discussion of arithmetic, is a device central to any computer: 
a circuit that does any of several logical or arithmetic operations. To design this does not 
require devising anything new; you need only assemble some familiar components. 

Problem: design a 1-bit ALU 
Here is a block diagram of a simplified ALU. Let's give it a carry-in 

and a carry-out, and let that output bit be low in any case where a carry is 
not generated (for example, A OR B). 

Two select lines should determine which operation the ALU performs, 
of the following set (use any select code you like): 

AND OR XOR ADD 

S1 5o 

Figure Xl3B.8: 1-bit ALU: block diagram 

Solution 

All we need is to combine standard gates and an adder with a multiplexer: 

A~......_,._t---\ 
B -+--.....+-< ....... ---1 

~----lc!.O 

r-----id! 

MVX -----OUi 

r-----;d2 

CouT 

Figure Xl3B.9: A simple ALU 
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A refinement: "flags" 

A computer's ALU always includes flip-flops that keep a record of important facts about 
the result of the most recent operation-not the result itself, but summary descriptions of 
that result: 

• was a carry generated? 

• was the result zero? 
• is the result positive or negative, in 2's comp notation? 

• was a 2's-comp overflow generated? 
• -and sometimes a few other items as well (see the 68008's flags, noted in class 

notes J.L3: just one marginally different flag in addition to those we have listed). 

Note: You should understand at least the D flip-flop before trying this problem. 

Problem: Add flags to ALU 

Add, to the ALU designed earlier, flags to record the following pieces 
of information concerning the result of the ALU operation: 

Carry 
Zero 
Sign 

Overflow 

was a carry generated? 
was the result zero? 
is the result positive or negative, in 2's camp notation? 
(assume that the single-bit output of this stage makes 
up the MSB of a longer word). 
was a 2's-comp overflow generated? (Make the 
assumption noted: this output is the MSB of a longer 
word, and thns constitutes the sign bit when this word 
is treated as a 2's-complement value.) 

Assume that a timing signal is available to clock the flag flops a short time 
after the ALU output has settled. 

Solution: 

" B 

c ... 

z.e.ro 

overflow 

'-<pdate. som~ or all (Ja9s: { 
(flol' cfoLN 

Figure X13B.10: Flags added to ALU 



Reading: 

Ch.S: 

Ch.9: 

Problems: 

Lab 13: Digital Gates 

Ch. 8: 8.01-8.12; Ch. 9: 9.01-9.03 
Specific advice: 

8.01-8.02; 8.03; among the number codes, 
ordinary ("natural") binary and 2' s 
complement are important. 

8.04-8.12: important topics here: 
Assertion-level notation (8.07); 
8.11, three-state outputs 
Logic identities (8.12): only a very few are 
needed, above all deMorgan's: (AB)*=A* + 
B* ("*"="bar" or complement). 

sec. 9.01-9.03 re TTL & CMOS gates: all 
relevant to today's lab. 

Embedded problems; try to explain to yourself 
how the gating shown in Circuit Ideas A, 
B, and E achieves the results claimed (p. 
557). 
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The first part of this lab invites you to try integrated gates, black boxes that work quite 
well, to carry out some Boolean logic operations. 

The later sections of the lab ask you to look within the black box, in effect, by putting 
together a logic gate from transistors. Here, the point is to appreciate why the IC gates are 
designed as they are, and to notice some of the properties of the input and output stages of 
TTL and CMOS gates. We will concentrate in this lab, as we will throughout the course, on 
CMOS. To overstate the point slightly, we might say that we will treat ordinary TTL as an 
important antique. 

Preliminary 

Some ground rules in using logic: 

1. Never apply a signal beyond the power supplies of any chip. For the logic gates 
that we use, that means 

keep signals between 0 and+ 5 volts. 
(This rule, in its general form-'stay between the supplies'- applies to analog 
circuits as well; what may be new to you is the nearly-universal use of single 
supply in digital circuits.) 

2. Power all your circuits from +5v. and ground only. This applies equally to CMOS 
(in its contemporary forms most widely used) and to TTL. 
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Logic Probe 

The logic probe is a gizmo about the size of a thin hot dog, with a cord on one end and a 
sharp point on the other. It tells you what logic level it sees at its point; in return, it wants to 
be given power (+5v and ground) at the end of its cord. (N.b., the logic probe does NOT 

feed a signal to the oscilloscope!) 

If you find a BNC connector on the probe cord, connect +5V to the center conductor, 
using one of the breadboard jacks. If, instead, you find that the cord ends with alligator 
clips or a pair of strange-looking grabbers, use these to take hold of ground and +5. You 
may have to peer closely at the leads to see the bit of red peeping through the black casing 
on the+ 5 lead (in the case of the Hewlett-Packard probe). 

How to Use the Probe 

Once the probe is powered, the probe lamp (near the tip) glows. Touch the tip to ground, 
then to +5v. You will be able to distinguish +5 v and ground from "float" (simply "not 
driven at all; not connected"). This ability of the probe is extremely useful. (Could a 
voltmeter make this distinction for you?) 

Use the probe to look at the output of the breadboard function generator when it is set to 
ITL. Crank the frequency up to a few kilohertz. Does the probe wink at the frequency of 
the signal it is watching? Why not? 

LED Indicators 

The eight LED's on the breadboard are buffered by logic gates. You can turn on an LED 
with a logic high, and the gate presents a conveniently high input impedance (lOOk to 
ground). 

In order to appreciate what the logic probe did for you earlier, try looking at a quick pulse 
train, using an LED rather than logic probe: use the breadboard oscillator (TTL) at a 
kilohertz or so. Does what you see make sense? You may now recognize that the logic 
probe stretches short pulses to make them visible to our sluggish eyes: it turns even a 10 ns 
pulse into a wink of about one-tenth of a second. 

Switches 

The PB503 includes three sorts of switch on its front panel: 

2 debounced pushbuttons 
(over on the left, marked PBl, PB2) 

These deliver an open collector output, and that means that 
they are capable of pulling to ground only. To let this level 
go to a logic high, you will need to add a pullup resistor, to 
5V: u 

I 

j_"No" 
o- -- CnorMolij 

+S open) 

l"Nc" 0
--- (nor~ !I~ 

closedY 

Figure Ll3.1: Pullup required on open-collector output (debounced pushbuttons on PB503) 
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an 8-position DIP switch, 
fed from a +5V /OV slide switch 
(marked DIP switch Sl) 

Sltde Swtf-ch 
(Selects volfaqe 
appltecl +o ott' 8 
DLf' SWitches) 

Figure L13.2: DIP switch in-line with output of one common slide switch 

This looks as if it could give you 8 independent outputs, but it can't; at least, 
not conveniently. The DIP switch is simply an in-line switch that delivers the 
level set by the slide switch, if closed-and nothing (a float: neither high nor 
low) if the DIP switch is open. To get 8 independent levels you need 8 pullup 
resistors. That's a nuisance, so most of the time you'll probably want to use 
this to provide just one logic level. To get that, close the DIP switch; to avoid 
fooling yourself later, probably it's a good idea to leave all the DIP's switches 
closed. 

two uncommitted 
slide switches (SPDT) 

These are on the lower right, and are bouncy (not 
debounced, anyway). To make them useful, tie one end to 
ground, the other to +5, and use the common terminal as 
output. You might as well wire these now, use them today, 
and then leave them so wired for use in later labs. 

A. Applying Integrated Gates 

13-1 Input & Output Characteristics of Integrated Gates: TTL & CMOS 

a) Yout 
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Use the two slide switches to provide 0 or +5 v to the two inputs of a NAND gates, using 
both TTL and CMOS, simultaneously. 

74XXOO pinout: 

~_[BJ __ ~3 __ 12 __ II __ ll;jo __ 9 __ B -~ 
1 Vee I 

: (+5'v) : 
I 1 
l, 1 

' I 

[.rft __ ru_G~J 
Figure L13.3: NAND gates: TTL & CMOS 
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The TTL part is 
74LS001 

The CMOS part is 
74HC002 

Note: for the CMOS part (but not TTL), tie all the six unused input lines to a common 
line, and temporarily ground that line. 

Now note both logic and voltage levels out, as you apply the four input combinations. 
(Only one logic-out column is provided, below, because here TTL and CMOS should 
agree.) 

INPUT 

0 0 
0 1 
1 0 
1 1 

b) Floating Input 

1-TTL 

OUTPUT: 
Lo~ic Levels Volta~es: TTL CMOS 

Disconnect both inputs to the NAND, and note the output logic level (henceforth we will 
not worry about output voltages; just logic levels will do). What input does the TTL "think" 
it sees, therefore, when its input floats? 

2- CMOS 
Here the story is more complicated, so we will run the experiment in two stages: 

1- Floating Input: effective logic level in: 

Tie HIGH one input to the NAND, tie the other to 6 inches or so of wire; leave the end 
of that wire floating, and watch the gate's output with a logic probe as you wave your hand 
near the floating-input wire. (Here you are repeating an experiment you did with the power 
MOSFET a few labs back.) Try touching your hand, as you do this waving, to + 5 v., 
ground, the TTL oscillator output. We hope that what you see will convince you that 
floating CMOS inputs are less predictable than floating TTL inputs, although we urge you 
to leave no logic inputs floating. 

1. LS stands for "low power Schottky," a process that speeds up switching. At the time when this LS prefix was chosen (1976) 
TTL was thought to go without saying; thus there's no Tin the designation, in contrast to CMOS, the late-bloomer, which 
always announces itself with a C somewhere in its prefix: HC, HCT, AC, ACT, etc. See the 74HCOO, just below. 

2. The "74" shows that the part follows the part-numbering and pinout scheme established by the dominant logic family, Texas 
Instruments' 74xx TTL series; "C" indicates CMOS; "H" stands for "high speed": speed equal to that of the then-dominant 
TTL family, 74LS. 
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2- Floating Input: Effect on CMOS power consumption: 
You may have read that one should not leave unused CMOS inputs floating. Now we 

would like you to see why this rule is sound (though, like most rules, it deserves to be 
broken now and then). 

+5 

Figure L13.4: Test setup: applying intermediate inpuJ level raises power consumption 

Tie the two NAND inputs to the other six, earlier grounded; disconnect the whole set from 
ground, and instead connect it to a potentiometer that can deliver a voltage between 0 and 
+5v. Rotate the pot to one of its limits, applying a good logic level input to all four of the 
NAND gates in the package. 

Now (with power off) insert a current meter (YOM or DVM) between the +5v supply and 
the V+ pin (14) on the CMOS chip. Restore power and watch the chip's supply current on 
the meter's most sensitive scale. The chip should show you that it is using very little 
current: low power consumption is, of course, one of CMOS' great virtues. 

Now switch the current meter to its 150 rnA scale (or similar range) and gradually turn 
the pot so that the inputs to all four NAND gates move toward the threshold region where 
the gate output is not firmly switched high or low. Here, you are frustrating CMOS' neat 
scheme that assures that one and only one of the transistors in the output stage is on. Both 
are partially on, and you see the price for this inelegance, on the current meter dial. 

Floating inputs thus are likely to cause a CMOS device to waste considerable power. 
Manufacturers warn that this power use can also overheat and damage the device. In this 
course we will sometimes allow CMOS inputs to float while breadboarding. But you now 
know that you should never do this in any circuit that you build to keep. 
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13-2 Applying NANDs to Generate Particular Logic Functions 

Before we look into the gritty details of what lies within a logic IC, let's have some fun 
with these gates, and try getting used to the remarkable fact that with NANOs you can build 
any logic function. 

a) "BOTH" 
Use NANOs (CMOS or TTL) to light one of the LEOs when both inputs are high. 

Figure Ll3.5: NANDs to light an LED when both inputs are high (your design) 

b) "EITHER" 
Use NANOs (CMOS or TTL) to light one of the LEOs when either of the inputs is low 

(here we mean a plain OR operation, not exclusive-or, by the way). (Trick question! Don't 
work too hard.) 

Figure L13.6: NANDs to light an LED when either input is low (your design) 

c) XOR (Optional; skip this if you feel pressed for time). 

Use NANOs (CMOS or TTL) to light one of the LEOs when one and only one of the 
inputs is high (this is the XOR function). (This task is straightforward with 5 gates, difficult 
with four. Don't waste much precious lab time on getting down to four; unless the solution 
happens to strike you at once, this sort of game is better done later, on paper.) 

Figure L13.7: XOR built with NANDs (your design) 
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B. Gate Innards: Looking Within the Black Box 

TTL Logic 

13-3 TTL ?-Gate 
Here is a circuit fragment much like the input stage of an LSOO gate: 

+5 

Figure L13.8: Input stage resembling LSTTI.. gate input 

Confirm that the gate performs the function you would expect. 
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A practical ITL gate follows such a logic stage with buffer stages that provide fast and 
clean switching, capable of providing a strong and unambiguous logic level out. (We will 
not build such stages here; if you are curious to see the circuits, see Text at pp. 566 ). 

CMOS Logic 
In the following experiments, we will use two CD4007 (or CA3600) packages; this part 

is an array of complementary MOS transistors: 

6 1'2 

Figure L13.9: '4007 (or "CA3600'') MOS transistor array 
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13-4 Two Inverters 

a) Passive Pullup 
Build the following circuit, using one of the MOSFETs in a '4007 package. Be sure to 

tie the two "body" connections appropriately: pin 14 to +5v., pin 7 to ground. (In fact, you 
will find that this is automatic for the particular PETs in the package that we show below; 
but you should consider this issue as you use MOSFETs.) 

+S 

_j 
{, 

Figure L13.10: Simplest inverter: passive pullup 

Confirm that this familiar circuit does invert, driving it with a TTL level from the 
breadboard oscillator, pulled up to+ 5v. through a 1k resistor. Watch the output on a scope 
(voltmeter or logic probe will not do, from this point on). 

Now crank up the frequency as high as you can. Do you see what goes wrong, and why? 
Draw what the waveform looks like: 

+S +5 

t t 
-<-> 

:> ..... -::; :> 

~ 

f = 1kHz. f = 1ookHz. 

Figure Ll3.11: Passive-pullup MOS inverter: at two frequencies 
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b) Active Pullup: CMOS 
Now replace the lOk resistor with a P-channel MOSFET, to build the following inverter: 

Figure Ll3.12: Active pullup: CMOS inverter 

Look at the output as you try high and low input frequencies. 
The high-frequency waveform should reveal to you why all respectable logic gates use 

active pullup circuits in their output stages. (The passive-pullup type, called open collector 
for TTL or open drain for MOS, appears now and then in special applications: driving a 
load returned to a voltage other than the + 5v supply, or letting several devices drive a 
single line, in the rare cases where 3-states (see below) don't do the job better.) 

Logic Functions from CMOS 

13-5 CMOS NAND 
Build the circuit below, and confirm that it performs the NAND function. 

Figure L13.13: CMOS NAND 
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13-6 CMOS Three-State 
The three-state output stage can go into a third condition, besides High and Low: off. 

This ability is extremely useful in computers: it allows multiple drivers to share a single 
driven wire, or bus line. Here, you will build a buffer (a gate that does nothing except give 
a fresh start to a signal), and you will be able to switch its output to the OFF state. It is a 
"three-state buffer." 

Figure L13.14: Three-state buffer: block diagram 

The trick, you will recognize, is just to add some logic that can tum off both the pull-up 
and pull-down transistors. When that happens, the output is disconnected from both +5 and 
ground; the output then is off, or "floating." One usually says such a gate has been "three
stated" or put into its "high-impedance" state. 

If you're in the mood to design !>orne logic, try to design the gating that will do the job, 
using NANDs along with the '4007 MOSFETs. Here's the way we want it to behave: 

• If a line called Enable is low, tum off both the pull-up and pull-down transistors. 
That means-

drive the gate of the upper transistor high; 

drive the gate of the lower transistor low. 

• If Enable is high, let the Input signal drive one or the other of the upper and lower 
transistors on: that means-

drive the gate of the upper transistor low while driving the gate of the 
lower transistor low, or vice versa. 

That probably sounds complicated, but the circuit is straightforward. If you're eager to get 
on with building, peek at our solution, below. 
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Figure Ll3.15: 3-state circuit: qualifies gate signals to Qup and Qdown• using 74HCOO NAND gates 

Test your circuit by driving the input with the breadboard oscillator, while the output is 
tied to a lOOk resistor driven from a slide switch. The slide switch can be set to ground or 
+5V. Use another slide switch to control the 3-state's enable. 

Watch the 3-state's output on the scope. Does the 3-state disappear electrically, when 
you disable the gate? 

At the moment, before you have seen applications, this trick may not seem exciting. 
Later, when you build your computer you will find 3-states at least very useful, if not 
exciting. 

+5 

>--..__- +o 
'Scope 

Figure Ll3.16: Circuit to demonstrate operation of 3-state buffer 

A 

J3 

c 

D 

shared output Une. 
("-hues") 

Figure Ll3.17: Three-states driving a shared "bus" line do not bother to build this!) 
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Class 14: Sequential Circuits: Flip-Flops 
Topics: 

• old: 

• new: 

gate output types 

minimizing combinational logic circuits; 
first look at sequential circuits: flip-flops. 

+ flop types: primitive: latch; D; J-K 
+ flop applications: 

• counters 
• shift registers 

Old topic: (recap) Gate Outputs 
Three different types: 

Text sec. 9.02,p. 572; 
p. 566 fig. 9.1 

Active-pullup: 

Most gates are active-pullup types: a transistor pulls the output firmly high; another 
transistor pulls the output firmly low (not at the same time, of course!). 

three-state: 
Text sec. 8.11, 
pp. 487-88. 

Generic 

____ _j 

C..MOS TTL 

Figure N14.1: Active pullup gates: generic; CMOS; TTL ("totem pole") 

Some gates can turn output off-that means connect out to neither high nor low (this is 
not the same as zero out: King Lear might say, "Nothing will come from nothing ... ;" but a 
slogan easier to remember might be that in digital electronics Zero ain't nothin'). This 
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output is widely used in computers: it allows multiple devices to share common wiring (a 
"bus"): 

~----------------------~ 
: I 

I 

In In 

en 

Figure N14.2: Three-state output: what you built in Lab 13 

open-collector: 
Text sec. 8.11, pp. 488-89 

Seldom used (once were used where 3-states now are used; called "open-drain" for 
MOSFET devices). Useful if output must go to voltage different from Vee or V00. Also 
useful to allow the simplest sort of "OR 'ing" of driving devices. 

+5 

D 
Figure N14.3: Open collector/drain: "wired-OR" connection 

Note that ordinary gates must not have their outputs tied together; this is a trick reserved 
for 3-states (and occasionally for carefully-used open-collector). 

A ------1 

OUT 
)--OUT 

B --+---1 

SELECT A/B SELH1 A/B 

Figure N14.4: Joining outputs: OK for 3-states, not OK for ordinary gates 

You can test your understanding of this last notion by designing a 4:1 multiplexer, using 
ordinary gates, then 3-states. This is asked in Text exercise 8.17, and is done as a Worked 
Example.) 
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A. Combinational Logic: Minimizing 

Often you need no such technique: 

Most of the time, the combinational logic you need to do is so simple that you need 
nothing more than a little skill in drawing to work out the best implementation. For such 
simple gating, the main challenge lies in getting used to the widespread use of active-low 
signals. 

Here's an example: 
"Clock flop if Rd* or Wr* is asserted, and Now* is asserted: 

+s 

Figure N14.5: Easy combinational logic; some signals active low: don't think too hard; just draw it 

You can make this problem hard for yourself if you think too hard: if you say something 
like, 'Let's see, I have a low in and if the other input is low I want the output high-that's a 
NOR gate ... "-then you're in trouble at the outset. Do it the easy way: 

The easy process for drawing clear, correct circuits that include active-low signals: 

1. Draw the shapes that fit the description: AND shape for the word AND, regardless 
of active levels; 

2. Add inversion bubbles to gate inputs and outputs wherever needed to match active 
levels; 

3. Figure out what gate types you need (notice that this step comes last). 

In general, bubbles meet bubbles in a circuit diagram properly drawn: a gate output with a 
bubble feeds a gate input with a bubble, and your eye sees the cancellation that this double
negative implies: bubbles pop bubbles. 

Some methods for minimizing 

If you do neec! to implement a more complicated combinational function, however, it's 
nice to know how. 

Here is a function. How would you implement it? 

~ '( Out 
0 0 

0 1 
0 0 

1 1 

Figure Nl4.6: A small function to implement: example of need for some minimization method 

You want to find the simplest implementation. You might proceed in any of several ways: 

1. You might simply stare at the table for a while, and discover the pattern. Some 
people like to work that way. 



N14-4 Class 14: Sequential Circuits: Flip-Flops 323 

2. You might write the Boolean expression for each input combination that gives a 1 
out: 

f = X*Y* + X*Y + XY 
Then you could use Boolean algebra to simplify this expression: factor: 

X*(Y* + Y) + XY = X* + XY 
Thus you discover that you can toss out one variable, Y, from two of the terms. 
After that, if you are on your toes, you recognize a chance to apply another 
Boolean postulate, and you end up with an agreeably simple equation: 

f= X*+ Y 
Not at all bad to build-but can we trust the process that got us here? Wouldn't it 
be easy to miss that last step in the simplification process, for example? 

3. You might enter the function on a Karnaugh map, and see what simplest form the 
map delivered: 

Text. sec. 8.13 

Figure NI4.7: Kama ugh map makes chances to simplify visually evident 

The map method is nice just because it does not require cleverness, and makes it 
hard to overlook a chance to simplify. Let's look briefly at the way these maps 
work. 

Karnaugh maps: rules 

Kamaugh maps set out in a two-dimensional form exactly the information carried in a 
truth table: just a description of the way a circuit should behave. The K-map adds nothing. 

Here are the rules for the game of K-mapping: 

group J's in blocks of 1, 2, 4, 8, etc. (powers of 2); these groupings must be 
rectangular. 

make these groupings as large as you can 

read the map to find the variables that describe the region you have grouped; those 
are the variables (and their levels) that you need to use; other variables have been 
shown unnecessary. 

Here are some examples: bad and good "covers," as these groupings are called: 

BC-
A 

0 0 0 or 0 

0 0 0 0 

+ 
Tl\.is' C. 
AN!) fJot th.is : AB 

=C 1\6 =C.(A+B) 

/ 
(Bad. buause. a c..ove.r should eru.lo~t. 

a power-at-two (\0. o-f tell!>', 1, 2,+, ett.) 

Figure NI4.8: Examples of bad and good K-map covers 
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Why look for big 'covers'? What's at stake? 
Karnaugh-mapping may look like a strange, abstract game unless we consider why we're 

trying to draw big blobs on the map. Here is another example, showing a map poorly 
covered (with timid little covers), then properly covered (with nice big covers). The reward 
is simpler gating, as you know; but let's look at this particular case. The left-hand map 
below is covered poorly; the right-hand map is done right. 

one. Ulvu cat.<hes 

G) 0 D • Oj ,_- a(l 4 Corn.ers . 

0 0 0 0 

0 0 0 0 

(j) Ia DU:: 

Poor . You c..an. do bt.tter 

Figure N14.9: One map covered poorly and well 

To see why big covers are good, contrast the gates you would need to implement the 'poor' 
covers versus the 'good' covers, above. Incidentally, we are rejecting chances to factor, so 
as to make the contrast simple and stark between the good and the bad. 

The gating on the left, below, shows what you would need to implement the clumsy 
covers above. Each 4-input AND implements one of the isolated 1 son the map. 

__- e. a c. h. i">olat.e.c\ -one. c. over 
f\e.~ds a 4-- '"f'"t A"-11:> 

( r;>1 var<ables di sc.ar4e.d) 

--t\\.e. -pc.:.r-t,-1\ c.o-1u 
'e.'tuirt:; a 3- '"P'* AND 

e.a~h. "I - c.dl c..ove.r 
vse.s on.\j a 2-inpvt gate. 

\110\svs 

Figure N14.10: Gating required to implement poor versus good set of 'covers' 

Summary 

Your rewards for finding the best covers are two--related, of course: 

big covers allow few inputs per gate; 
few covers allow few gates. 
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A last example that makes Karnaugh Maps look good 
Text sec. 8.15, 
ct 8.23,p.500 
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Before we admit that practically no one uses K maps, let's give a K-map a chance to look 
good. Here it will discover a little joke planted by Caesar Augustus (or was it Pope 
Gregory?): the Text's 31-day machine: 

"'000,. = 

Ja•v.lrr, 
de. 

: ~-~D+----~ (" ,,,,, 
c- 1 

I I 
I I 

D I !... ______ _, 

01 

II 

to 

.f~Ai5•AT): A@D 
Figure N14.11: 31-day machine: Karnaugh map 

We'doHt c~r.e" wl.at our 
\1.\a~hi>\e ooes W•tk 
''n.o"tl.. 14"! 

This one was a fluke! K-maps seldom look so good. In fact, now we will admit that you 
seldom need these maps. Most problems are too easy or too hard forK-maps. So, don't 
spend your time getting really good at using K maps. 

2. "Sequential Circuits:" Flip-Flops 
All our digital circuits so far have been combinational: their outputs were functions of 

present input values (except while waiting for the brief propagation delay). 
Now we begin to meet sequential circuit~ircuits that care about their past (analogous 

to capacitors, which unlike resistors, cared about their pasts.) 
Flops are easy to understand. A harder question arises, however: why are clocked circuits 

useful? We will work our way from primitive circuits toward a good clocked flip-flop, and 
we will try to see why such a device is preferable to the simpler flop. 

A. A primitive flip-flop: the "latch" 
Text sec. 8.16 

In the beginning was the cross-coupled latch. It is at the heart of all fancier flip-flops. It 
looks simple; it also may look fishy, since you can see at a glance that it includes feedback. 
That's what makes it interesting: that's what makes it care about its past. 

Text p. 506,fig. 8.47 

-~"S 

5 .. J'o---~ 
pu~k button ~ 
or 5Li de. 

Q 

switch.Q..~ 

Figure N14.12: Cross-coupled NAND latch 
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Operation Table: 
S R Q 
0 0 
0 1 
1 0 
1 1 

How does one use this thing? In which state should it rest? How flip it, flop it? (That is, 
how Set it, Reset it: "set"==> send output high; "reset" or "clear"==> send output low). 

This device works, but is hard to design with. It is useful to debounce a switch; but 
nearly useless for other purposes, in this simplest, barebones form. 

How does it debounce a switch? 
Text sec. 8.16, 
p. 507,fig. 8.49 

~G ~.~... 

c~ 
O'l\ release~ 
( aahesio>"l) 

Figure N14.13: Switch bounce: first hit sets or resets flop: bounce does not appear at output 

But in other settings this flop would be a pain in the designer's neck. To appreciate the 
difficulty, imagine a circuit made of such primitive latches, and including some feedback. 
Imagine trying to predict the circuit's behavior, for all possible input combinations and 
histories. 

--------

Figure N14.14: Example meant to suggest that asynchronous circuits are hard to analyze or design 

Designers wanted a device that would let them worry less about what went on at all 
times in their circuits. They wanted to be able to get away with letting several signals 
change in uncertain sequence, for part of the time. 
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This was the basic scheme they had in mind: 

_j 
relax 

Figure N14.15: Relaxing circuit requirements somewhat: a designer's goal 

Toward a Good D Flip-Flop 
Text sec. 8.17, 
p. 507,fig. 8.31 
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The gated S-R latch, or transparent latch takes a step in the right direction. This circuit 
is just the NAND latch plus an input stage that can make the latch indifferent to signals at S 
and R: an analog to a camera's shutter. 

Q 

Enabl~ 

Figure N14.16: Clocked or gated S-R latch ("transparent" latch) 

This achieves more or less what we wanted; but not quite: 

enable'i=====4----~==== 
l>llliffe.,.e)\t to 'CCJYeS about I"diffu~..,t 

'"put ; i'>'put i 
Figure N14.17: Transparent latch moves in the right direction: now we can stand screwy input levels part of the time 

The trouble is that this circuit still is hard to design with. Consider what sort of clock signal 
you would want, to avoid problems with feedback. Ticklish. 

A Good D Flip-Flop: Edge-Triggered 
Text sec. 8.17, 
pp. 508-09 

Because the simple NAND latch is so hard to work with, the practical flip-flops that 
people actually use nearly always are more complex devices that are called edge-triggered. 

Edge-triggered flip flops 
These flops care about the level of their inputs only during 
a short time just before (and in some rare cases after) the 
clock edge. 

An older design, called by the nasty name, master-slave, behaved nastily and was rendered 
obsolete by the edge-trigger circuit. The master-slave survives only in textbooks, where it 
has the single virtue that it is easy to understand. 

The behavior called edge-triggering may sound simple, but it usually takes people a 
longish time to take it seriously. Apparently the idea violates intuition: the flop acts on what 
happened before it was clocked, not after. No, this behavior does not violate causality. 
How is this behavior possible? (Hint: you have seen something a lot like it on your scopes, 
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which can show you the waveform as it was a short time before the trigger event. How is 
that magic done?) 

Text sec. 8.17, 
p. 509,fig. 853 

•s I 74HC~4 

~ 

Va.•14-
(I{P•~ 

Figure N14.18: 74HC74 edge-triggered D flip-flop 

Here are its crucial timing characteristics: 
Text sec. 8.17, 
p. 5.ll,fig. 855 

c. I k ==~==::::.__ ____ _ 

Q '....-.-\ 

I • ,.I \.-. propa9ation 
t de\a~ 

setur tcme 

D lnpv~ mvst b., stab\~. 
A 3ood -1'\op cares abovt 
its input levels onJj h~re_ 

Figure N14.19: D-flop timing: setup time and propagation delay; hold time should be zero 

A D flop only saves information. It does not transform it; just saves it. But that simple 
function is enormously useful. 

Triggering on Rising- versus Falling- Edge 

The D flop shown responds to a rising edge. Some flops respond to a falling edge, 
instead. As with gates, the default assumption is that the clock is active high. An inversion 
bubble indicates falling edge clock: 

Tri aYiqle iYidicate~ 

~ ''ed~e-hiqqeYed" 

@ ~ Bubble sa'\!. "utive low" 

Figure N14.20: Clock edges: rising or falling edge (never botW 

1. As usual, we have to qualify the "never" slightly: there are some one-shots that trigger on both edges: e.g., the '423 shown in 
Text sec. 8.20, and the 81'20. The "never" does seem to hold for flip-flops, though. 
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Edge- versus Level-sensitive flops & inputs 
Some flip-flops or flop functions respond to a clock-like signal, but not quite to the edge: 

that is, the device does not lock out further changes that occur after the level begins. The 
transparent latch is such a device. We met this circuit a few pages back. 
Examples of level-sensitive inputs: 

1) A "transparent latch": 
The character displays we use in this lab work this way (called "HP Displays" in lab 

notes): 

Figure N14.21: Level-sensitive: transparent latch: 

Output follows or displays input while E* is low. 

2) Reset on a flip-flop 
Text sec. 8.17, 
p.509 

... 

l<!eset pn~vaib over 
cfo,Ked '"fut; 
Set does too- a11d 
;~~.,·,ae"'tall~ 'P..!"evads 

Q over ~set,f 
bot"' asserted 

- 11ot a l10Ywta\ 
e l,le11t 

Figure N14.22: Jam Reset*: it reaches into the oulpullatch, and prevails over the fancy edge-trigger circuit that precedes the 
out latch 

So-called "jam type" takes effect at once. This scheme is universal on flip-flops, not quite 
universal on counters. But a reset is never treated as a clock itself--even in the cases where 
it 'waits for the clock'-the synchronous scheme. The edge-triggering scheme is reserved 
for clocks, with only the rarest exceptions (like the IBM PC's interrupt request lines: sec. 
10.11, p. 701). 

Edge triggering usually works better than level-action (that is, makes a designer's tasks 
easier); edge-triggering therefore is much the more common scheme. 
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Another type, less important: J-K Flop 
Text sec. 8.17, 
p.509 

N14-11 

The D flop is by far the most important, but you should understand the J-K, which is aD 
plus a little feedback and gating. It can do 4 tricks, instead of two: 

J a •• , 
0 0 Qn ------,--"To:J:J'-' 
0 I 0 ) • • B~ ~avU,r D-Lkt &~avior 
I 0 I 

I I Q. 

Figure N14.23: J-K Flop, and its operation table 

You won't often design with this kind of flop, but the J-K's Toggle/Hold* behavior is 
important to us in one setting: it makes the design of synchronous natural-binary counters 
straightforward. You'll meet these devices in a minute. 

Applications 

Counters 

Ripple counters 
Text sec. 8.17, p. 511 

elk. 

+s +S 

Figure N14.24: Simple "counters": "divide-by-two"; "divide-by-four" (ripple type) 

Synchronous counters 
Text sec. 8.25, p. 524 

Figure N14.25: Synchronous counter 

The signature of the synchronous counter, on a circuit diagram, is just the connection of a 
common clock line to all flops ( <==> syn-chron: same-time). The synchronous 
counter-like synchronous circuits generally-is preferable to the ripple or asynchronous 
type. The latter exist only because their internal simplicity lets one string a lot of flops on 
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once chip (e.g., the "divide by 16k" counter we have in the lab-the '4020, or the more 
spectacular '4536: divide-by-16M!). 

"State machine": counters generalized 
Text sec. 8.18 

One can use D flops plus some gating to design a circuit that will step through any 
sequence of states that you choose ("state" means simply the set of levels on the flop 
outputs). We will do more of this a couple of labs from now. 

p. 514,fig. 8.60 

present state ==> next state 

Shift-Register 
Text sec. 8.26 

00 
0 1 
1 0 
1 1 

01 
1 0 
0 Cl 
x x - "do~t c.are' 

Figure N14.26: Gates & D flops can make an arbitrary "state machine:" first glimpse 
z}-74HCOO 

_;
trig 

clock 
+5~----._--+---~---+----~------~ 

Figure N14.27: Shift-register (lab circuit) 

A shift-register generates predictable, orderly delay; it shifts a signal in time; it can convert 
a serial stream of data into parallel form, or vice-versa. 

In the lab, you will use such a circuit to generate a pulse: to act like a so-called "one
shot." A NAND gate added to the shift-register does the job. (We use two, because in Lab 
16 we need a double-barreled one-shot). See if you can sketch its timing diagram, and then 
what happens if you wire a NAND gate, as in the lab, to detect Q0Q1 *. 
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Ch. 8: Worked Examples: Combinational Logic 

Two Worked Examples: 

1. a case so easy that you need no systematic method at all 

2. a harder case, which can be solved either systematically (with K maps, for 
example), or by 'brainstorming.' 

1. Glue Logic 
Here's another of those common combinational networks often called 'glue,' because 

these odds and ends of gates stick together the big chips. 

Solution: 

Problem: turn on a memory under stated conditions 

Enable the memory (at a pin called CS*) under the following conditions: 
if-

• TimeOk* is asserted and A 19 is high and Block* is not asserted, 
or if-

• Busgive* and Ready* are asserted. 

Use two-input gates; draw them using assertion-level symbols, and label 
the gates with their part numbers, as follows: 

NAND 00 
NOR 02 
NOT 04 
AND 08 
OR 32 

It's easy if you stay cool: just draw the shapes that fit the words ("and," "or"), then take 
care of the active levels. Don't think about the name of the gate you're drawing till it's all 
done. 

Figure X14.1: Gates to enable memory under the stated conditions 
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2. Digital Comparator (A > B) 

Problem: 2-bit Greater-Than Circuit 

Use any gates you like (XORs are handy by not necessary) to make a 
circuit that sends its output high when the 2-bit number A is greater than 
the 2-bit number, B. Here is a black box diagram of the circuit you are to 
design: 

Figure X14.2: 2-bit greater-than circuit 
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Note that this problem can be solved either systematically, using K maps, or with some 
cleverness: consider how you could determine equality of two one-bit numbers, then how to 
determine that one of the one-bit numbers is greater than the other; then how the more- and 
less-significant bits relate; and so on). We'll do it both ways. 

Figure X14.3: 2-bit greater-than circuit: Systematic solution 

And here's a more fun way to do it: 

BO 

>-e----------15>-. ... so this so tilts it: Sil'lce 

A1>B1, A:>B. 

)-----A>B 

A1=B1, so we need to consult 
the /itt(e Juys ... 

. . . sui{ 
A's LSB > B's ... 

Figure X14.4: 2-bit greater-than circuit: A "brainstormed" solution 

The brainstormed circuit is no better than the other. In gate count it's roughly a tie. Use 
whichever of the two approaches appeals to you. Some people are allergic to K maps; a few 
like them. 
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Reading: 

Problems: 

Lab 14: Flip Flops 

Ch. 8.12-8-19, plus 9.04 re: switch bounce 
(yes, it's in Chapter 9). 

Specific advice: 

In 8.13, re: K-mapping, see if you can 
understand why Karnaugh's odd 
Gray-code ordering of the variables 
is necessary. Don't work too hard 
at K mapping, though. 

• Only scan 8.15, re muxes and PAL's: 
PALs are important devices but we 
will not meet them in this course; 

• Concentrate on 8.16-8.17 re flip-flops 
and counters; 

Embedded problems, plus Bad circuits C, D, 
and AEl, AEll-15. 

14-1 A primitive flip-flop: NAND Latch 
This circuit, the most fundamental of flip-flop or memory circuits, can be built with either 

NANDs or NORs. We will build the NAND form: 

Operation Table 
S R 
0 0 
0 1 
1 0 
1 1 

Q 741-lCOO 

swdches +5 

~ :-o---<J 
R 1 

Figure L14.1: A simple flip-flop: cross-coupled NAND latch 

Build this latch, and record its operation. Note, particularly, which input combination 
defines the "memory state;" and make sure you understand why the state is so called. 

Leave this circuit set up. We will use it shortly. 
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Practical Flip-Flops 

It turns out that the simple latch is very rarely used in circuit design. A more complicated 
version, the clocked flip-flop is much easier to work with. 

14-2 D Type 
The simplest of the clocked flip-flop types, the D, simply saves at its output (Q) what it 

saw at its input (D) just before the last clocking edge. The particular D flop used below, the 
74HC74, responds to a rising edge. 

The D flop is the workhorse of the flop stable. You will use it 50 times for each time you 
use the fancier J-K (a device you will meet soon, too). 

a) Basic operations: Saving a Level; Reset 

The D's performance is not flashy, and at first will be hard to admire. But try. 
Feed the D input from a breadboard slide switch. Clock the flop with a "debounced" 

pushbutton (the buttons on the left side of the breadboard will do; note that these switch 
terminals need pull-up resistors, since they have open-collector outputs. (This you saw last 
time; but perhaps you've forgotten!) Dis-assert Reset* and Set* (sometimes called 
Clear* and Preset*), by tying them high. 
Note that the '74 package includes two D flops. Tie the inputs of the unused flop high or 
low (this is just to keep the chip cool, as you recall from last time). 

from ) 
sl1de Swt+chJ 

"de~J 
switch ) 

+5 

+5 

t 74HC74 
Vee= 1~ 
GNP= 7 

Figure L14.2: D-flop checkout 

Confirm that the D flop ignores information presented to its input (D, for "data") 
until the flop is clocked. 

Try asserting Reset*. You can do this with a wire; bounce is harmless here. 
(Why?) What happens if you try to clock in a High at D while asserting Reset*? 
Try asserting Set* and Reset* at the same time (something you would never 
purposely do in a useful circuit). What happens? (Look at both outputs.) What 
determines what state the flop rests in after you release both? (Does the answer to 
that question provide a clue to why you would not want to assert both Set* and 
Reset* in a circuit?) 
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b) Toggle Connection: Feedback 

The feedback in the circuit shown below may trouble you at first glance. (Will the circuit 
oscillate?) The clock, however, makes this circuit easy to analyze. 

In effect, the clock breaks the feedback path. (See Text sec. 8.17, pp. 510-11 and class 
Notes 14, re difficulties that feedback introduces into non-clocked sequential circuits.) 

+.5 

+5 

Figure L14.3: D Flop biting its own tail 

build this circuit and try it. 

First, clock the circuit manually. 

Then clock it with a square wave from the function generator (the breadboard 
generator is less good than an external generator, with its higher fmax). Watch 
Clock and Q on the scope. What is the relation between fclock and fQ? (Now you 
know why this humble circuit is sometimes called by the fancy name "divide-by
two.") 

Crank up the clock rate to the function generator's maximum, and measure the 
flop's propagation delay. (To do this, you will have to consider what voltages In 
and Out to use, as you measure the time elapsed. You can settle that by asking 
yourself just what it is that is "propagating.") 

14-3 J-K Type 
You might get away with never using this flop type, but you need to understand its 

behavior in order to understand standard binary counters. 

The J-K's strength is its versatility. It can mimic the other important flop types: D and T 
or "toggle". (A "toggle" type does not simply toggle willy-nilly like the D-flop circuit you 
just wired. It is smarter than that: it can toggle or hold its last state, depending on the level 
you feed it. You will see such behavior in a few minutes.) 
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a) Checkout 
Verify the J-K's behavior (described in Text at p. 509). 

Dis-assert Preset* and Clear*; drive the J and K inputs from slide switches; clock the flop 
with a debounced signal. 

Operation Table 

J K Qn+l 

0 0 
0 1 
1 0 
1 1 

__]L_ 

(debounced) 

+5 

+5 

Figure L14.4: J-K checkout 

b) Applications: Mimicking Other Types 

~ 74HC112 
Vee= 1c; 
GND=8 

The J-K is-or was (when designers used flops in small packages rather than in big 
arrays)-especially useful for complex designs, because, as noted above, it can mimic any 
other kind of flop. Here we will watch it do its chameleon-like tricks: 

a- Type A Flop ( = " __ -Type") 

Operation Table 

In Qn+l 
0 
1 

Figure L14.5: J-K as_ -type flop 

Build the circuit above and record its behavior on the operation table. 
is the J-K imitating? 

b- Type B Flop(= " __ -Type") 

Operation Table 

In 
0 
1 

Figure L14.6: J-K as_ -type flop 

What type of flop 
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14-4 J-K in Counters: Ripple and Synchronous Counters 
A. Ripple Counter 

The preceding J-K circuit, like the earlier D-with-feedback, can be made to toggle on 
every clock-or "divide by two." 

Cascading two such circuits lets you divide by four; and so on. Build this circuit: 

t'tHC11~ 
{Vee=- 16 , j nd = g- ; 

dt'sa.ssert Sand R, 
as u.sua.)) 

Figure Ll4.7: Divide-by-four ripple counter 

Watch the counter's outputs on two LEOs while clocking the circuit at a few Hertz. 
Does it "divide by four?" If not, either your circuit or your understanding of this 
phrase is faulty. Fix whichever one needs fixing. 

Now clock the counter as fast as you can, and watch Clock and first Q0 then Q1 on 
the scope. Trigger on Q1. 

Watch the two Q's together and see if you can spot the "rippling" effect that gives 
the circuit its name: a lag between changes at Qo and Q1. 

B. Synchronous Counter 

Now alter the circuit to the form shown below. This is a synchronous counter. 

clock 

Figure Ll4.8: Synchronous divide-by-four counter 

See if you can use the scope to confirm that the ripple delay now is gone. 

14-5 Switch Bounce 
Here is a storage scope1 photograph showing a microswitch pushbutton bouncing its way 

from a high level to low: 

Figure L14.9: Microswitch bouncing from high to low (pulled up through lOOk) 

1. Incidentally, this "storage scope" was an ordinary scope fed by a microcomputer of the kind you will build later in this 
course. The computer took samples during the bouncing process, stored them in memory, then played them back repeatedly 
to give a stable display. You will have a chance to try this, if you like, during the final lab sessions. 
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To see the harmful effect of switch bounce, clock your divide-by-four counter with a 
(bouncy-) ordinary switch such as a microswitch pushbutton. The bouncing of the switch is 
hard to see; but its effects should be obvious. 

r>~Jcr-oswikh pushbvHon 

~ 
n.c. 

I 
"normally 

cloSet!" 

n.o. com 

" '\., I nor1Yial ~ 
•pen" 

+5 

lk 
~-+o4.7k 

~,___._-a> 
_L (your <ovnfer) 

74 

Figure L14.10: Switch bounce demonstration 

14-5-a Watching Switch Bounce (Optional: for scope enthusiasts) 

Switch bounce is hard to see because it does not happen periodically and because the 
bounces in any event do not occur at exactly repeatable points after the switch is pushed. 

You can see the bounce, at least dimly, however, if you trigger the scope in Normal mode 
with a sweep rate of about 0.1 ms/cm. You will need some patience, and some fine 
adjustments of trigger level. Some switches bounce only feebly. We suggest a nice snap
action switch like the microswitch type. 

14-5-b Eliminating Switch Bounce: Cross-Coupled NAND's as Debouncer 
Return to the first and simplest flip-flop (which we hope you saved), the cross-coupled 

NAND latch, also called an "R-S" flop. Add pull up resistors, and as input use the bouncy 
pushbutton. Ground its common terminal. (This circuit is described in Text sec. 817, p. 
507.) 

Why does the latch-a circuit designed to "remember"-work as a debouncer? 

+5 

-1-5 

Figure L14.11: NAND latch as switch debouncer 
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14-6 Shift Register 

Note: Please build the circuit below (a digitally-timed one-shot that 
evolves from the shift-register) on a private breadboard; you will use this 
circuit next time. 

The shift-register below delays the signal called "IN," and synchronizes it to the clock. 
Both effects can be useful. You will use this circuit in a few minutes as a one-shot-a 
circuit that generates a single pulse in response to a "Trigger" input (here, the signal called 
"IN"). 

'74 HC 175 

IN 

Vee: ib 
G-ND = 8 

clock .....iiL.._-1---_._--1---._---<I------' 
+5 

Figure L14.12: Shift register 

Clock the circuit with a logic signal from an external function generator; use the 
breadboard's oscillator to provide "IN." Let fclock be at least 10• f.,in"· 

a. One Flop: Synchronizer 

Use the scope to watch IN, and Q0 (Q of the leftmost flop); trigger the scope on IN. 

What accounts for the jitter in signal Oo? 

Now trigger on Q0, instead. Who's jittery now? 

Which signal is it more reasonable to call jittery or unstable? (Assume that the 

flops are clocked with a system clock: a signal that times many devices, not just 
these 4 flip-flops.) 

b. Several Flops: Delay 

Now watch a later output-Q1, Q2, or Q3, along with IN. (We'llleave the 
triggering to you, this time.) 

Note the effect of altering fclock· 
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c. Several Flops Plus NAND Gates: Double-Barreled One-Shot 

Add two NAND gates, as shown below, and watch those gates' outputs along with TRIG. 
Again note the effect of altering fclock· 

Checkout 

_r 

trig 

~7LtHcoo 

clock 
+s~----._--+----4---+----~------~ 

Figure L14.13: Digitally-timed (synchronous) one-shot (double-barreled) 

Slow-motion: first use a manual switch to drive Trig, and set the clock rate to a few 
Hertz. Watch the one-shot outputs on two of the breadboard's buffered LEDs. 
Take Trig low for a second or so, then high. You should see first one LED then the 
other wink low, in response to this low-to-high transition. 
Full-speed: when you are satisfied that the circuit works, drive Trig with a square 
wave from one function generator (the breadboard's) while clocking the device 
with an external function generator (at a higher rate). 

To make sure you understand what this circuit is doing, you may want to draw a timing 
diagram, showing TRIG, clock, the four flop outputs, and the output of the two NAND 
gates. 

r+S 
c.lock 

0 

trig {:
5 

Qo {~s-· 
Q1 {;s _____ _ 

~a r~s _____ . 
Q3 ts_ .. 

ovrA{':~--- ............ . 

t:s-
OUT 8 0 .............. . 

Figure L14.14: Timing diagram for digitally-timed one-shot 

What are the strengths and weaknesses of this one-shot relative to the more usual RC one
shot? 
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Topics: 

• old: 

new: 

Old Topics 

Class 15: Counters 

Flip-flop timing characteristics 

+ why clocks 
+ what accounts for setup time 

counters from flip-flops: ripple versus synchronous 

counters 

+ fancier (IC-) counters 
+ "fully synchronous" counters: sync clear, sync load 
+ using load to make arbitrary+ n counter 

+ Counting as digital design strategy 

1. Flip-flop characteristics: Recapitulation 
Why clocks? Because 'breaking the feedback path' eases design and analysis of 

sequential circuits. 

For example-

elk-[] 
This works ... ...but this doesn't. 

Figure N15.1: Clocked device (edge-triggered) makes feedback harmless: instability is impossible 

The circuit using the transparent latch oscillated at around 40MHz, when we built it in the 
lab. 
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The beauty of edge-triggered, synchronous circuits 

The clock edge is a knife cleanly slicing between causes of changes-all to the left of the 

clock edge, in the timing diagram below1-and the results of changes-all to the right of 

the clock edge. 

clock /~ \ /{Hj 
J ! 

1 
i all q_uie.t 

lob of clocked devices Mw nspond ne.w c.hl\1\ges, •• 
to new i nf'u"ts 

all q,uiet ante more.. 

Figure N15.3: Edge-triggered synchronous circuit timing 

A particular example 

Figure N15.4: D flop biting its tail: feedback is harmless 

This works fine, unless you try to push the clock speed very high. In that case, trouble 

reappears: 

-tsu-
cJ ock. 

-tpr"f'--

Q 

Figure N15.5: Even the wonderful synchronous scheme fails if you try to run it too fast: tsetup violation 

This fails, because D changes during tsetup· This produces an unpredictable output; may 

even hang up, refusing to make up its mind for a strangely long time ("metastable"). 

1. We assume zero hold time; some older devices, like the 7474, have a non-zero hold time; that's nasty, and the newer devices 
usually show the better characteristic, zero hold time. E.g., 74LS74 and 74HC74. There is nothing magical about achieving 
tH = 0: the IC designers simply adjust the relative internal delay paths on the data and clock lines so as to shift the "window" 
of time during which data levels matter. Here's the idea: 

~ ~l 
74-HC74- 7'+7'-f 

Figure N15.2: An IC designer can trade hold-time against set-up time: two 74xx74 designs 
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Setup time 
Sounds like a technical detail, but it's a concept you need in order to get timing problems 

right. 
Detailed view (in the special case of the 7474 D flop): 

setup time is the time required for a change of D level to work its way into 
the flop-to the points labeled X andY, below 

_. __ .,. __ .,./ 
7 4-74-

flor ·,s "~t-vr'' when a 
t-han~~ at D wor-ks it~ 
wa':l ;n to ~ po\nt * 

Q 

SCOPE 

Figure N15.6: 7474 D flip-flop: two signal"pipelines": flip-flop setup; oscilloscope trigger's equivalent trick 

The new information needs to work its way through a "pipeline" that is two gates deep, in 
order to set up the flop to act properly on a clock. You might guess that this process could 
take as long as two gate delays, around 15 to 20 ns, and that is in fact about how long the 
flop's specified setup time is. (In fact, internal gate delays are less than the delay of a 
packaged gate; but the scale remains about right.) 

Counters from flip-flops 

-t5 i"S 

( LOC,__ ________ _j 

Figure N15.7: Simple counters: Ripple and Synchronous 

The ripple counter is the easier to design and build, but the synchronous is in all other 
respects preferable. 

Here is a scope photograph showing two integrated counters in action. The top 4 traces 
show one counter (Q2, Ql> Q0, clock), the lower 4 traces show another (same pattern). 
Which is the ripple counter, which synchronous? To which clock edge does each counter 
respond? 
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Figure NI5.8: Ripple versus synchronous counter: 74LS93 vs 74LS163. Sweep rate= 50 ns/div. 

Virtues of synchronous counter: 

• settles to valid state faster, after clock (wait for just one flop delay) 

• shows no false intermediate states 

Virtues of ripple counter: 

• simple. Therefore, can fabricate more stages on one chip than for synchronous. 

• in some applications, its weaknesses are harmless. E.g., 

frequency dividers (where we don't care about relative timing of in and 
out, and don't want to look at the several Q outputs in parallel, but care 
only about the relative frequencies, out versus in) 

slow counters (driving a display for human eyes, for example: we can't 
see the false states) 
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New topics: 

1. Integrated Counters 
There is no excuse for building a counter from flip-flops, outside a teaching lab. Nifty 

integrated counters are available. These devices include features that make them easy to 
use: 

Cascading 
Any respectable counter allows "cascading" several of the devices so as to form a larger 

counter. To permit cascading, synchronous counters include carry pins: a carry IN and a 
carry OUT. 

Carry IN 

Carry OUT 

This is an enable: when asserted, it tells the counter to pay 
attention to its clock. Notice that all chips are tied to a 
common clock line. Do not drive one counter's clock with 
a carry out. If you do, you're making a ripple scheme, not 
a fully-synchronous counter. 

This signal warns that the counter is about to roll over or 
overflow. In the case of a natural-binary up counter, it 
detects the condition all ones on the flop outputs. Notice 
that this signal must come before the roll-over, not after, 
because it has to tell the next (more-significant) counter 
what to do on its next clock. 

Here's how easy it is to cascade three of the big counters you are using in today's lab, for 
example: 

Figure N15.9: Cascading three integrated counters: easy! 

If you're really on your toes, you will recognize that the Carry OUT* signal shows not only 
that this counter is full, but also that all less significant counters also are full. What very
simple logic on the chip manages to determine all that? 

Loading 
Many counters allow you to load a value "broadside" into its flops: 

Load: When you assert LD*, the counter is transformed into a simple 
register of D flops: on the next clock edge, those flops simply take in the 
values presented on the data inputs. (This description fits so-called 
"synchronous" load; "asynchronous" or "jam" load also is available; it works 
like the jam clear described below.) 

When you release LD*, the counter becomes a counter once more. This may be hard to 
grasp, when you simply hear it stated. We'lllook at an example of the use of load in a few 
minutes: Lab 15's '+ n' circuit. 
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Clearing 

Clearing could be called a special case of loading, but it is so often useful that nearly all 
counters offer this function (more than offer load), and they offer it in two styles: 

asynchronous or "jam" clear 
The clearing happens a short time after Clear* or Reset* is 
asserted (say, 5 to 10 ns); the clearing does not wait for the 
clock. 

synchronous clear The clearing is timed by the clock: on assertion of Reset* 
nothing happens until the clock edge. 

Query: which sort of clear would you like in a programmable divide-by-n counter, like the 
one you will build in the lab? (You will find this question explored in a Worked Example.) 

Here are some standard counters, with their clear functions (some new counters offer 
both sorts of clear and load-synchronous and asynchronous-on four pins: e.g., 

74ALS560). You will find a table, 8.10, at p. 563 showing a great variety of counters and . 
noting the features each offers. 

resptet l 

RJ8 
.JAM JAI\.1 

Figure NlS.lO: Three integrated counters: some offer jam clear, others synchronous 

In a separate set of notes you will find some counter-application problems detailed. We 
won't look at all of those now. Instead, we will concentrate on the counter applications you 

will meet in the lab. 
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Using the counter Load* function; two lab circuits 

The simple operation of loading the counter with a pushbutton turns out to raise some 
fussy timing problems, because the lab counters offer a synchronous load2• Usually, that is 
good; here is it a bit of a nuisance:. Do you see why the upper "do-nothing" gate is 
necessary? 

Lab Displays 

+5" 

O.!,uFl 

+!f ~-&.·,--...-.----~ 
LOAD 

J1 
2 

)o"'---dLD 7HS 

'tb') 

Figure N15.11: Lib debounce and load logic 

While we're showing you oddities that you'll meet in the lab, we should mention the 
fancy displays you will meet today. They are more than the usual '7-segment' display; they 
include the decoder that translates a 4-bit code into the lighting of the proper pattern of 20 
small LEDs; and they include a transparent latch . 

data ,r, 
(A;s,c,t:>) 

.... . . . . .... . . .... 
B C D blank 

rc 
VISIble 

"·~ 

MS/ t f<Io no di~pl~j 
Figure Nl5.12: Hexadecimal display: includes latch and decoder 

2. lhese counters are Oddballs: 74LS469's: 8-btt up/down counters, w1th 3-state outputs. Here's how they're Odd: 

ITL-nasty old power-hungry TIL (you'll notice they run warm to the touch). Why? Simply because such 
counters are not available in CMOS; 
They're not even standard TIL, despite their standard-sounding part number: they're made by the manufacturer 
of a programmable gate array (a PAL), and are simply an array, programmed at the factory. The manufacturer 
saw a gap in the list of standard TIL functions, and filled it. 
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Lab's Divide-by-N Counter 

The circuit below is more interesting: it takes advantage of the Load* function to make a 
counter that will count through the number of cycles set at the keypad: 4 bits from the 
keypad feed the counter's data inputs. 

Notice that the counter is rigged to count down. If you load a value n, how many states 
does the machine run through? (That is, what does it "divide by"?) The answer to this 
question may answer the riddle you meet when you use the Carry-out* to drive a speaker: 
'Why does this silly instrument play out of tune?' 

74 L5 469 

CLK~ 
I 
I 

--'----~'' 

Qo~ 
I ' Th no 
: : ~~~9~ 

U> = c;,----;--\. ~ : (jJ as~e.-te.d 
;~ :; : 

Colll\h I 0 shrtin'3 value 
loade-d 

Co detects 2uo 
( wh~ 2uo , not $ F F ? ) 

Figure N15.13: Lab's divide-by-n machine 

2. Counting as a Digital Design Strategy 

Because it is easy to make a digital circuit that counts, it often turns out that a good way 
to make a digital device designed to measure some quantity is to build a stopwatch to 
measure the duration of a cleverly-generated pulse. 

More specifically, here's the idea: 

1. build a counter that counts clock edges (this is a sort of 'watch'); 

2. add gating that lets you start and stop the watch (making it a 
'stopwatch'); 

3. build some circuitry that provides a waveform whose period is 
proportional to a quantity that interests you (call this 'Input'); 

4. use the stopwatch to measure period, and thus to measure 'Input.' 
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Here are two examples to illustrate the technique: 

a. Digital Voltmeter (or 'AID converter; voltage input') 
Text sec. 9.20, 
fig. 9.54,p. 625 

INPUT--~ 

... TILL CDMF'ARATOR 
SEES VCAr > V1N 

N15-9 

VCAf' 

~-TIME. 
CAPACI'fOfl... 
HELD AT COUNTE.R 
GtWUND t.t-.tA.&.E.D 

DUP-ING 
THIS TIME. 

Figure N15.14: Example 1: measure period to measure voltage 

b. 
Digita(Capacitance Meter (Lab 15) 

OSCILLATOR 

Yr 
L___ FIXED, 
..._- KNOWN 

START 

t 

Figure N15.15: Example 2: measure period to measure capacitance 

The idea is very simple. Questions of timing raise the only interesting issues. For a look at 
such questions see the Worked Examples on counter use. 
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Ch. 8: Worked Examples: Counter Use 

Worked examples, with notes: 

1. Modifying count length: divide-by-13 counter 
2. Counting as design strategy: 

a. sonar range detector (period counter I) 
b. reaction timer (period counter II) 

1. MODIFYING COUNT LENGTH: strange-modulus counters 

Once upon a time-about 10 years ago--designing with counters was a chore that 
sometimes entailed designing the counter itself, if the counter was not entirely standard. 
That's no longer true. IC counters make your work easy. In these notes we'll look at two 
sorts of problem: first, the easier of the two: making a counter divide by some funny 
number; second, the more interesting of the two problems: using the counter to make an 
instrument that measures something. 

Divide-by-13 counter 

The fully-synchronous /oadable counter makes it now almost as easy to rig up a divide
by-13 counter, say, as to pull a divide-by-16 from the drawer. Not quite so easy; but almost. 

Synchronous versus Asynchronous Load or Clear 

It's not hard to state the difference: a synchronous input "waits for the clock," before it is 
recognized; asynchronous or jam inputs take effect at once (after a propagation delay, of 
course); they do not wait for the clock. Either one overrrides the normal counting action of 
the counter. 

But it is hard to see why the difference matters without looking at examples. Here are 
some. 

Modifying count length 

Problem: Divide-by-13 Counter 

Given a + 16 counter (one that counts in natural binary, 
from 0 through 15), make a + 13 counter (one that counts 
from 0 through 12). Decide whether you want to use Clear 
or Load, and whether you want these functions to be 
synchronous or asynchronous. 
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a) A poor design: use an asynchronous clear 
Here's a plausible but bad solution: detect the unwanted state 13; clear the counter on that 

event: 
Text sec. 8.29, 
compare problem 8.36, 
p.545 

DE..TECT 1101 

Figure XIS.l: A poor way to convert natural binary counter to + 13 

Why is this poor? 
The short answer is simply that the design obliges the counter to go into an unwanted or 

false state. There is a glitch: a brief invalid output. You don't need a timing diagram to tell 
you there is such a glitch; but such a diagram will show how long the false state lasts: 

CLOCI". 
Qo 

Qj 

oz 
Q3 

CLR* 

Figure X15.2: Poor" + 13" design: false 14th state between 12 and 0 

In some applications you might get away with such a glitch (ripple counters, after all, go 
through similar false transient states, and ripple counters stili are on the market). You could 
get into still worse trouble, though: the CLR* signal goes away as soon as state "13" is 
gone; the quickest flop to clear will terminate the CLR * signal; this may occur before the 
slower flops have had time to respond to the CLR * signal; the counter may then go not to 
the zero state, but instead to some unwanted state (12, 9, 8, 5, 4, or 1). That error would be 
serious; not just a transient. 
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b) A proper design: synchronous 
Text sec. 8.29; 
compare fig. 8.88, p. 545 

A counter with a synchronous Clear or Load function-like the 74HC163-allows one to 
modify count length cleanly, without putting the counter into false transient states, and with 
no risk of landing in a wrong state. It is also extremely easy to use. 

To cut short the natural binary count, restricting the machine to 13 states requires a little 
logic to detect the 12 state-not the 13, as before. On detecting 12, the logic tells the 
counter before the clock to clear on the next clock. 

DE.TEC.T 
STATE. 

1}..10 
(!ICO:J 

Figure X15.3: Synchronous + 13 from + 16 counter 

Here, in case you need convincing, is a timing diagram showing the clean behavior of this 
circuit. 

Text sec. 8.29; 
compare the very similar 
timing diagram for the 
parallel load '163: 
fig. 8.89, p. 546 

CLOCK__/ 

Gl.o 

Q.l 

Gl.:t. 

Q.3 

CLR* 

Figure X15.4: Proper count modification: using synchronous Clear• 

The synchronous-clear+ 13 circuit works nicely. It's too bad, though, that it requires a 
NAND. 

The LOAD function 

Use of the Load function instead of the Clear can achieve nearly the same result with a 
single inverter instead of the NAND. The Text spells out this solution in section 8.29, and 
looks closely at the timing of this circuit. The use of Load rather than Clear to define the 
number of states saves gating, but has some funny side effects. Either-

• 

• 

it obliges one to use a strange set of states (starting from three, say, and counting 
up to 15, then loading three again in order to define 13 states); this would be all 
right if the frequency alone interested you, but it would not be all right if you 
wanted to see the counts 0 through 12. 
Or it requires use of a down counter (load the initial value; count to zero, use the 
Borrow signal to load once more: "Borrow," by the way, is just a down-counter's 
"Carry" signal). This is the technique we use in Lab 15 to make a counter of 
variable modulus; there, where only frequency concerns us, the technique works 
fine. 
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loti cl J 
a/fer _.71 

overflow 

Figure XlS.S: Divide-by-13 counter, using synchronous Load function 

We should not make too much of these odd effects: the number of states a counter steps 
through always bears a slightly funny relation to the value loaded or detected: if you load 
and count down, states= (count+ 1); if you load and count up, states= (2's comp of count 
loaded(!)); if you detect and clear, states = (count-detected + 1). So, things are tough all 
over, and it doesn't matter much which scheme you choose. 

See Text Table 8.10, 
p.563. 

Synchronous load and clear functions are nice: they support the ideal of fully
synchronous design. Such clears are available on a very few recent registers, as well as on 
most respectable counters (some new counters offer both sorts of clear and load, on four 
pins: e.g., 74ALS560; see Text table 8.10, p. 563 for other examples of such fancy 
counters). 

Synchronous functions have not simply replaced asynchronous, because sometimes the 
synchronous type is a decided nuisance. See the ornate gating required in order to let one 
use a pushbutton to load the '469 address counters in Lab 15. That Load function is 
synchronous, so we need to generate a clock, timed properly with respect to the Load* 
signal. A jam load would have been just right, there. But most of the time, synchronous 
functions remain preferable. 

2. Using a counter to measure period 
-and thus many possible input quantities 

Counting as a Digital Design Strategy 

We have noted already, in the Notes for class 15, that we can build a variety of 
instruments using the following generic two-stage form: 

• an application-specific 'front end' to generate a pulse whose duration is 
proportional to some quantity that interests us; 

• a 'stopwatch' that measures the duration of that front-end pulse. 

Here we will look at a couple of examples of circuits that fail in an attempt to use this 
arrangement, and then we will go through a longer design exercise where we try to do the 
job right. 
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a) Two failed attempts 

1- Digital Piano-key Speed-sensor 

Here is a flawed scheme: part of a gadget intended to let the force with which one strikes 
the key of an electronic instrument determine the loudness of the sound that is put out. The 
relation between digital count and loudness shows a nasty inverse relation. 

FHOTODETECTOR CD 
PHOTODETECTOP. ® 

DETECTOf\ L/ Td 
OUTPUTS: ~~----"'---4! 

14 
V ® I 

(KE.Y STRUCI'>J TIME. 

Dl0lTAL 
GA!f-l 
CDNTfi.OL 

f f "ECD \____ 

HOW USE. TJ 1 
HOW HANDLE. THIS 

Tf\OU l:oi .. J:.SOME.. 
RE.LAT\ON? 

Td 

Figure X15.6: Troublesome Example 1: measure period to measure how hard a key was hit 

We offer this as a cautionary example: probably this piano design is a scheme worth 
abandoning! 
2- Getting the details right can be difficult: a bad circuit from the Text 

Here a small error makes this big circuit useless. 

._R 

N·DIGIT COUNTE-R 
HOLD: "[ HI"-H 
OUT/IN: E. LOW 

MAI"G!INX. PFC>e>LEM ~1-J!:>: 
fl...OP IS CLOGI"-E.D 1/JHit...E. 
COU~ STILL COUNTIN~-7 
OCCASioNAL lA/~ VALUI!. 
01-J DI!':>PLA'i''J- IWT FOR O~L'( 
oNE. 5E.Co}JD - AND MA'I' E?f'... 
RARE. IF f·IN I::> LOW 
f~ TsE.TUP (KTUAL) ~ 2.Ns \ 
~ FE.RIOD OF INFUT "' ~ 50 N~} 

Figure X15.7: A transparent latch causing mischief again 
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b) Trying to do it right: Sonar ranger, a worked example 

Now that you're getting good at designing these circuits, let's do an example more 
thoroughly, this time working out the details. This is a question from an old exam. 

Problem: counter Application: sonar ranger 

The Polaroid sonar sensor1 generates a high pulse between the time 
when the sensor transmits a burst of high frequency "ultrasound" and the 
time when the echo or reflection of this waveform hits the sensor. Here's 
a timing diagram to say this graphically: 

Pulse (LJ,/r1,) f ChO f()./se [cho 

S"e n t A ereiuer! )ent Rece/ued 
.j, ~ ~ {. 

~- -fivW ~ 

J L J L 
~t "'- d-':> ~ -f o( 2d ---1> 

Figure X15.8: Timing of sonar ranging device 

So, the duration of the high pulse is proportional to the distance between 
the sensor and the surface from which the sound bounces. Only a couple 
of bursts are sent per second. 

Design hardware that will generate a count that measures the pulse 
duration, and thus distance. Let your hardware cycle continually, taking a 
new reading as often as it conveniently can. Assume that the duration of 
the pulse can vary between 100 J.lS and 100 ms. You are given a 1 MHz 
logic-level oscillator. 

In particular: 

• Make sure the counter output is saved, then counter is cleared to 
allow a new cycle. 

• Choose an appropriate clock rate, so that the counter will not 
overflow, and will not waste resolution. 

1. used in many Polaroid cameras and also sold separately; we use one in our lab 
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A Solution 
Step one is just to draw the general scheme; a block diagram. It looks almost exactly like 

all the earlier examples. The difference is only the device that generates the period that our 
"stopwatch" will measure. 

[)- (DUA!TER_ 
[cho Se,soR 

(X mit/ R ece/ue) 

Figure X15.9: Sonar device: digital readout. A block diagram 

The rest of our task is only to take care of the timing details. As usual, timing is the only 
challenge in the design task. 

We need to save the final count, then clear the counter, at the end of each cycle. You do 
exactly this in Lab 15, but there your job is complicated by the circumstance that the 
register you use is the nasty transparent latch on the display chips. Here we will choose 
edge-triggered flip-flops instead. Nearly always, edge-triggered devices ease a design task. 

Let's suppose we mean to use an 8-bit counter like the one we have been using in the lab, 
74LS469. It has no Clear so-called, but we can use its Load function to do the job: just load 
zeros. It also offers an enable function, called "CBin *"--carry-borrow-in*. That will be 
handy, letting us start and stop the counter with a logic level. 

How's this look? 

CLOCK 

Q)t 

COUNT 
cout-~r* 
::FLOF C~ ===~ 
COUt-JT *;!(. 
=LD 

Figure X15.10: Trying to make sure the count is saved before it is cleared 

t.L..OCK 

The timing looks scary, doesn't it? Will the count get saved, or could the cleared value 
Gust zeros) get saved? The timing diagram above says it's OK: the D flops certainly get 
their data before the clearing occurs. 
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To get some practice in thinking through this problem, look at another case, a little 
different: this hypothetical counter uses an asynchronous ("jam") clear. 

Figure XlS.ll: ... Another example: failing at the same task 

Probably this will work like an elaborate equivalent to the following cheaper circuit: 
f:, lOUT 

Figure X15.12: Sad equivalent to the bad save & clear circuit 

We should stick with the earlier circuit, then: the one that clocks the D flops slightly 
before clearing the counter. A ghost of a problem remains, however. Whether we should 
worry about it depends on whether we can stand an occasional error. 

The problem is that we clock the D register while the counter still is counting. 
Sometimes the counter Q's will be changing during the setup time of the D register. That 
can lead to trouble. The most bothersome trouble would be to have some of the 8 D flops 
get old data (from count n) while others get new data (from count n+l). That's worse than 
it may at first sound: it implies not an error of one count, but a possibly huge error: imagine 
that it happens between a count of 7FH ("H" means "hexadecimal") and 80H: we could (if 
we were very unlucky) catch a count of FFH. That's off by nearly a factor of two. 

This will happen very rarely. (How rarely will the Q's change during setup time? 
Typical time during which flop actually cares about the level at its data input ("aperture," by 
likeness to a camera shutter, apparently) is 1 or 2 ns (versus 20 ns for worst case tsetup); if 
we clock at 1 MHz, that dangerous time makes up a very small part of the clock period: 1 or 
2 parts in a thousand. So, we may get a false count every thousand samplings. If we are 
simply looking at displays that does not matter at all. If, on the other hand, we have made a 
machine that cannot tolerate a single oddball sample, we need to eliminate these errors. 
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A very careful solution 

Here is one way to solve the problem: synchronize the signal that stops the counter (with 
one flop); delay the register clock by one full clock period, to make sure the final count has 
settled: 

ctrclk 
COUNT 
Qo 
Q.o;i:=Cin 

Ql::. LD 

Q1*' =-
Rf:GI<;.TE-R CLK 

\._ __ --1 

I 
LAST CHANGE. 
OF COUNTE..R.. OUTPUT 

.----------, 

COUNT 

CLOCK 

\--.__.....-/-

I 
I 

UPDATE 
fLOPS 
( t<:.E.GJISTE:R) 

Figure X15.13: Delaying flop clock, to make sure we don't violate setup time 

Perhaps you can invent a simpler scheme. 

A nice addition: overflow JJgg 

I 

CL!=AA 
COUNIER 

Can you invent a circuit that will record the fact that the sonar ranger has overflowed-so 
as to warn us that its latest reading is not to be trusted? 

Hint: flip-flops remember. A good circuit would clear its warning as soon as it ceased to 
apply: when a valid reading had come in. 

Here's one way: (I find this hard!): 

• Let the end of the Carry* pulse clock a flop that is fed a constant high at its D 
input. Call the Q of this flop overflow. 

• When the period finally does end, let the overflow Q get recorded in a Warning flop 
that holds the warning until the end of the next measurement. 

• Meanwhile, to set things up properly for the next try, let the end of the period clear 
the overflow flop, so that it will keep an open mind as it looks at the duration of the 
next period. 
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+5 

COUNT 

Cout * 
Q ovflw 

Figure X15.14: One flop records fact of overflow: another tells the world 

This scheme looks pretty ornate. See if you can design something tidier. 

X15 -10 

The details of this design are fussy, but we will see one of the methods used here several 
more times: feeding a constant to a D input, so as to exploit the nice behavior of an edge
triggered input. You will see this again in a "Ready" key, Lab !13, and then in interrupt 
hardware, Lab !15. 

Recapitulation: full circuit of sonar ranger 

Here, with few words, is a diagram of a no-frills solution to the sonar ranger problem. 
The diagram omits the overflow warning logic drawn above, and the 'very careful. .. ' logic. 

f'E.RIOD TIMING! DETAIL: 
CL.OCf"\ R.EGISTE.R.S 

BEFORE CLEARING COUNTERS 

CLE-AR) 

4 4 4 

Figure X15.15: Sonar period-measuring circuit: full circuit 
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f. A Worked Example 
Text exercise AE 8-3 (at end of chapter) 

Let's conclude with a similar but easier problem, taken from the Text. 

Problem: Reaction Timer 

Design a reaction timer. "A" pushes his button; an LED 
goes on, and a counter begins counting. When "B" pushes 
her button, the light goes out and an LED display reads the 
time, in milliseconds. Be sure to design the circuit so that 
it will function properly even if A's button is still held 
down when B's button is pushed. 

Assume that you are given a 1 MHz oscillator. Provide 
a Reset pushbutton. 

A 
_B 

Figure X15.16: Reaction timer: block diagram 

REACTION TIMER: Solution 

DEB ouN::E. ? 
YE.? ~ A, No f()P.. B; 

WHY A? f;€cALlst. WJNC~ oN f'E.l..EA?C of 
A'<:> WTTCN COULD vT~T COL)I-JTE,~ IF e> 
JIJ01 PUSHUJ HE..f-.. BUTICN. 

YE.5, THIS DECODER 
USUALLY IS NOT ON 

NOT !? ? BECAU?E.. THE:.R.E 's No 1-iJ'<f<.M 
IN RESETTING. Rf_PE..ATl:-DLY. 

MUI':>T use E.DCU:.
TRic;,c;E.F<.E.D CLoc..,:., 
NOT SET : e5' 'IDLllD 
NOT P~ll fi'Of!.. e> 
TO CLE..AI<:. (1<:.1:5E.T) 
F"L-OP WHILI::.. Ns 
BUiTON Vl/>6 rx>WN. 

~IPfLE. CDUNTI:--!<:.S o . .,:.. 
HE.R.E.. WE. ~E. ,AectJT 
ONL'f' THE. FINAL. \h\LLJE. 
WE. CAN WA.IT A FEW 
\00 N5! 

A CHIP WITHIN DISPLAY, 
1'6 IN OlJ~ LABS 

Figure X15.17: Reaction timer 
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Reading: 

Lab 15: Counters 

Ch. 8, sec. 8.17, re counters; 8.18- 8.29. 
Specific Advice: 

• Important topics: 

8.24 latches & registers 
8.25 counters 
8.26 shift-registers: less 
important 
Look closely at 8.29, timing 
example 

• Postpone: 

8.27 registered PALs1 

Problems: 
Embedded problems, plus AE2-AE10, 

AE12, Bad Circuits B, E, F 

Today you move up from the modest "divide-by-four" of last time to a 16-bit "fully 
synchronous" counter. We will let it show off some of its agreeable features, notably its 
synchronous load, and then we will put it to use in two circuits: a programmable divide-by-n 
machine, then a period-measurer, which can operate as a capacitance meter, with just a little 
help. 

At first you will use only scope and logic probe to watch the counter's performance; then 
you will add hexadecimal displays that should make the counter's behavior more visible. A 
keypad will let you control the counter and load it. 

Note: the keypad is not a standard commercial part. It can be made up 
from the schematic attached to these Lab notes, or it can be ordered in 
complete form. See Parts List for ordering information. 

Next time, you will use this counter and display to provide an address to a memory. The 
keypad will let you write 8-bit values into any memory location. In a later lab, counter and 
memory will serve as foundation of the microcomputer. So, today you are beginning to 
build your little computer. 

l. Paul says a registered pal is just a spouse; but Monolithic Memories/AMD, who hold the PAL trademark, disagree. 
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Note: You must build today's circuits on your own private breadboard: a 
set of 5 or 6 breadboard strips mounted together. This breadboard will 
become the foundation of the microcomputer you will soon be putting 
together. 

15-1 Integrated 8-bit Counter 

i>re3dboar-d 
()$C (TTL) 

CovT I+ 

7 +5 

Vee "' pin 2~ 
G~p 'f'n 12. 

Figure LlS.l: Integrated 8-bit up-down counter: 74LS469 
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This 8-bit counter2 includes most of the features standard to integrated counters, plus a 
few that are less standard: 

• It counts up or down-and that is handy for our purposes: soon (in Lab 16) you 
will use the counter to take you to a particular memory location or address; 

• it includes three-state outputs: this feature will let us tie the counter outputs directly 
to the computer bus; 

• it can be "loaded" with an initial value. Today, we will use Load* to let us make a 
divide-by-strange-number counter; later, in the micro labs, we will use Load* to let 
us hop to a particular starting point in the memory's address space. 

• it includes carry-in* and carry-out* pins that make "cascading" these chips easy, so 
as to form a bigger counter. Later in this lab you will cascade two '469's to form 
the 16-bit address counter needed in the micro labs. 

Watch clock and Q0, then clock and Q7 (triggering in both cases on the Q); then watch Qo 
and Q7: do you see any delay of the higher-order Q relative to the lower-order, as you did in 
even the small ripple counter you built in Lab 15? Now take a look at Cout*.3 

15-2 Cascaded 16-bit counter 
The '469 is as easy to cascade as IC counters usually are: all you need do is connect 

cout* from one stage to cin * of the next; you could keep doing this almost indefinitely 
(except for the accumulation of carry delays if you made the chain very long). Try this out, 
cascading a second '469: 

Figure L15.2: Two '469 8-bit counters cascaded to form a synchronous 16-bit counter 

2. This counter happens to be made up from a logic array (a PAL): the manufacturer of the array saw a gap in the set of standard 
TTL functions, and used one of its arrays to fill that gap. Note the standard-sounding part number: 74LS .... 

3. The manufacturer calls this carry "Carry-Borrow-Out" (CB0u1*) to reflect the fact that this counter can count down. We will 
use the shorter term "Carry" in these notes. 
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Note that the carry out of the low-order counter does not drive the higher counter's clock, as 
in a ripple counter. (How would the pair of counters behave if you did make that 
connection?) 

Keypad and Load 

Now let's add the keypad to the circuit: bring in its DIP connector, letting the keypad 
feed 8 bits of data to the middle 8 bits of the 16-bit counter. Let Cout* from the low-order 
counter drive that (8-bit-) counter's LD* pin ("LD" stands for "load," as you probably 
know). Remove the earlier connection of LD* to + 5V, of course. 

1~ ~s ~"9 

8·eiT uP/DoWN CoUNTER 

O¢Di DZ D3D'f DS"04 D7 
3 ~ 5 " 7 8 9 10 

Figure LI5.3: 16-bit counter: keypad feeding counter's data inputs, and Coul• driving LD•; one Cout • drives speaker (see 
below) 

Asserting the LD* pin makes the counter behave like a register of 8 D flops rather than a 
counter: on the next clock, the '469 loads its 8 flip-flops with the data at its 8 inputs (labeled 
DO .. D7, above). LD* is tied to Cout*, so these signals are asserted only when the counter is 
about to 'roll over;' since the counter is set to count down, it reloads each time it hits zero. 
So, this circuit lets the keypad set the number of counts that occur between loads; thus the 
keypad sets period and frequency of the Cout* pulse waveform. Note: Temporarily tie the 
Up*/Dn pin high for this exercise. 

Watch Cout* and Q3 of the low-order counter as you vary the keypad input value. Does 
the response fit what you expect? 

15-3 Hearing the effect of Load*: strange modulus counter 
Now, to make more vivid the power of this loadable counter to vary its modulus-the 

number of states it steps through-let's listen to the counter's output frequency: let Cout * 
driv.e a transistor switch (a power MOSFET is easiest), which in turn drives the 
breadboard's speaker, as shown in the figure above. If you want to annoy your neighbors 
with a louder tone, let cout * drive a toggling flip-flop: the 50%-duty-cycle signal that comes 
out of the flop makes more noise than the narrow cout* pulse does. 

The keypad (its low nybble) now determines the number of cycles (or clocks) the counter 
steps through: 16 X key-value. You can see this effect if you clock the counter with the 
breadboard's TTL oscillator and watch the Load* pin on the scope. 
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The keypad now should act like the keyboard of a crude musical instrument. Do you hear 
the pitch fall by an octave when you change from key X to key 2X? (At one frequency 
extreme, your instrument goes out of tune. Why?) 

15-4 Adding Displays 

.... . . . . .... . . .... 
1 4 

B C D bl~k 

rc 
VISible 
h•re 

MS/ tHionod;srl~J 
Figure L15.4: Hexadecimal display: pinout & functions 

The display chips that you will now install do quite a lot: they are not simply 7-segment 
LED displays. They include-

the LEDs (lots more than 7 segments: 20 little dots, instead); 

a decoder that translates the 4-bit input into lightings of the appropriate LEDs; 

a 4-bit latch; 

a blanking function. 

Each display shows the hexadecimal character (0 through F) that corresponds to the 
four-bit value fed to it. 

The latch is not edge-triggered but "transparent:" so long as you hold En* low, 
information passes straight through, as if there were no latch present; when En* goes high, 
the latch holds the last value it saw. Today we will keep the latches in their "transparent" 
mode (En* tied low). 

The blank function (at pin 4) does what it sounds as if it should: it blanks the display if 
held high. The pin has very strange input characteristics, however: unlike any other logic 
input (TTL or CMOS) it floats low, and one must source a large current into Blank (2 rnA) 
in order to drive the pin high. 

Now install the four hexadecimal displays as shown in figure Ll5.5 (next page). Note, 
however: 

• do not alter the counter clock wiring at this point: the breadboard oscillator should 
continue to clock the counters. 

• don't let the "bus" shown in the diagram confuse you: the bus is a useful notion but 
note that to connect a particular display line to the 'bus' may mean, in concrete 
terms, simply that one installs a wire linking a pin on the display to one Q of the 
counter. It is true that both points now are on the bus; but you will not see any 
evidence of that. The bus is a concept, not a thing-unless you happen to be using 
a breadboard that carries a set of common lines dedicated to this bus. 
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Watching Cout* in slow motion 
Now the displays make it easy to see the present state of the counter. Try using the 

breadboard's oscillator to carry you to the state in which the low-order counter is filled 
(showing hex characters FF). Take control of the Up*/Dn pin to help you steer your way to 
that count, then walk slowly up a few counts, down a few counts, crossing and recrossing 
the boundary between $00FF and $0100. Watch Cout* as you do this, and see whether that 
pin behaves as you expect: what state of the low-order counter does it detect when you are 
counting up? ... when you are counting down? 

15-5 Completing keypad-to-counter wiring 

The additional connections shown below let you control the counter from the keypad. 
Make these changes, and then check that the circuit performs as it should. 

Ht'-
sosz~ : •• 
734-o • 
~~ : : . 
~~~ 
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. . .. 
1b-BIT BU.S 

~·~~: ~:-~~:::; ~=:::·~.~;:_t:.\~ 'i:.=i.~;~~;.'.:.fl~~-.~ :-: ... ~::::=·:, ;-~::=. :;;.:=.:~:-~:::·;:~:.\.=.~s~::r;::;."7\·~·j/::.:-_:::.i.=.l=· .::.}·::::-:~ :?· rt·=·~ ::-~:-;:-~i::;~:~i ~:~·: ~ .. _, :·s:-=:: ·:·};, : =:~\i·;;~i}:: ::;:::.:.·~:a:::::: ...... ~.:;'!:.:t;;.::=.: :.!:~(,=.-.~·.:~:: ... :;: ~~-~::::.':~·- ~-:·:·:~~:-)~'i'.-:-ti=;.:,. ~::-. =~=.:.~ :·:·:·~::·::\:; .. ·! :-~:~ ·:~-:\b. 
~ ~ AA Al5 

KD7 DIP.5WITtH 
(HiGH- oRDER 

HEX DIGIT) 

Figure LlS.S: Address counter and display; driven by keypad 

Most of the changes are self-explanatory. Note that you should now disconnect the line that 
tied U*/D high; reconnect U*/D to the keypad (at pin 11). 

The logic that drives the LD* pin is not self-explanatory, so let's take a closer look at this 

part: 
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+5" 

O.J,.u.Fl 

+5' -~.:tz,.__._. ........ -'-l 
LOAD 

" 
3 2 

LD 7HS 
'tf>9 

Figure L15.6: Debounce & load logic 
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The complications result from the fact that the counter's Load* function is synchronous: 
that is, it takes effect only when the counter is clocked. Ordinarily, synchronous operation 
is good; here, it is a nuisance, requiring us to generate a properly-timed clock every time we 
want to load by hand. The logic shown debounces the pushbutton and delays the release of 
Load* until the clock edge comes up. The loading occurs upon release of the LOAD* 
pushbutton. 

Checkout 

When the keypad, counter and displays are wired, check that you can control the address 
counter from the keypad: 

INC should increment the counter; 

DN should decrement the counter; 

RPT should let you race about in memory (Up by default; Down if you hold DN 
while pressing RPT). 

The LOAD* pushbutton should load the counter's middle two hex digits with the 
value entered at the keypad, when the LOAD* button is released. 

The 4-position DIP switch driving the counter's top 4 bits determines which "segment" of 
address space (of 16 possibilities) Load* lands you in. 

When you are satisfied that your counter works, your circuit is ready for use in the next 
lab, where it will serve-as you know-to provide an address to memory. That is the most 
important of the jobs we want the counter to perform. But in the time that remains in this 
lab we hope you will take the opportunity to exploit the counter for an application that 
should be both instructive and fun: capacitance meter. 

A. Counter Application: "Stopwatch" as Capacitance Meter 
A very slight alteration of the 16-bit counter you wired last time will let you start and stop 

the counter: you need only add a manual switch to control the level of the low-order Carry 
in*. So altered, your counter would be a primitive stopwatch. The addition of a few flip
flops and two NAND gates can make this stopwatch more convenient: first by letting you 
latch the counter output into the displays (that way you need not watch the counting-up 
process), then by clearing the counter automatically after the result has been latched. 

That circuit can measure the length of time a signal spends low (as we have wired it). 
This period-measuring circuit then could be put to any of a number of uses. We ask you to 
use it to measure the period (or half-period, to be a little more accurate) of the waveform 
coming from a 555 RC oscillator. If you then hold the "R" constant and plug in various 
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C's, you will find that you have built a capacitance meter. We hope you will find this a 
satisfying payback for about a half-hour's wiring. 

When you have had some fun with the circuit, we ask you to restore your counter and 
RAM to their earlier form: so, flag the changes you make to the circuit as you go 
along-you may want to plug in odd-looking wires at the points where you remove a wire. 
(There are only a few of these points.) 

15-6 Stage One: Simple Stopwatch 
Remove the lines that now drive Clock and LD* of both '469's; remove the line that 

grounds cin *. 
Drive Clock with a TTL signal from the function generator (not the breadboard 

generator; you will soon need a frequency higher than its 100 kHz); temporarily tie LD* 
high. 

Confirm, first, that you can start and stop the counter by taking Cin *low, then high, using 
a manual switch. Then set the keypad to 00 and check that you can clear the counters by 
taking LD* low (while the clock is running). You now have a clumsy stopwatch. 

Figure L15.7: Simple stopwatch 

15-7 Stage Two: Automatic Period Meter 
The stopwatch becomes a period meter if we add the automatic output-latching and 

counter-clearing mentioned above. For this purpose we need a circuit that will generate 
pulses timed thus: 

Courtt 

Lo.fch En 

Clear 

Figure Ll5.8: Required latch and clear pulses 

You may recognize this pair of pulses, evoked by the rise of Count*, as precisely the output 
of the digitally-timed one-shot that you built in Lab 14-and saved, we hope. 

The first pulse, LatchEn*, will update the HP displays: these transparent latches will take 
in new information when En* is low; they will hold that information after En* goes high. 
(Notice that we need to generate a pulse, not the usual edge, to make use of this transparent 
latch; here's an example of the clumsiness of such pseudo-clocking: edge-triggering is 
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much neater.) The second pulse clears the counter when its result is safely stored in the 
latches. 
Generating the required pulses: double-barreled One-Shot 

Pull out the one-shot that you built in Lab 14: 
71t He 17S 

Figure L15.9: Digitally timed one-shot ("double-barreled'') 

Use the signal called LatchEn* to drive the En* of all four address displays (you must of 
course remove the prior connection to ground). Let Clear* drive LD* of both counters. 
Clock the one-shot and counter with the same signal, from the function generator. (The 
frequency now may be as high as you like. Try 1 MHz). 

Drive the one-shot input (Trig, above) and the counter's Cin * with the manual switch. 
You should find that the circuit measures the duration of the time you hold Cin *low. (If you 
clock at 1 MHz, then the duration is measured in microseconds, of course.) Note that the 
count you see is in hexadecimal-a little unfamiliar to most of us ten-fingered creatures. 
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15-8 Capacitance Meter 
You can transform your period meter into a capacitance meter in a few minutes by wiring 

a 7555 oscillator and feeding its output to the period meter, in place of your manual switch: 
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> I I onHhcd: 

1k ?> 4 6 sl Ao Lis;~; J T 1 1 I 
~D1s 11 ~~-'" ~nrs- lA1:11 -!-~ ~ ~ s_b_ ~~ 

., ~~ lfN eN 8L EN 5L 'N BL EN &L 

tock..c ' 7S55 H"P~ • • •• : • •• •• •• •• •• 
~ rill r-f-t;>CI-1< Co.,C! SoSZ· ' ' "' ' 
~ TR GHD '734o :•• :•• 

!::: e 11 (4"J : • • • 
c I-:- -t 3 2' \'j ~ ~ '==-3 2. ---=-'q I" ADDRESS BUS Al5 ) J AIJ J) J ... 0) J J A ) A! 

._.1. ~~~ AD~~ 
GND C~l< ~ 

~~"l•"\'Z-.:l~~:.::_r::.::~:::-~·:·~~~~··:.{.\~i~··~~!}'':>'-~f·~·. ··:~~~·w;::~~-=-\~:r:·~.~-~.ii!if·V:_:t~<:·:..:.~;=-·~i~~~'-1·.~·:·~-~~~'~'i::.~.·w.<:·.-~=.\'·~·: . .,···;\\~·r~::;;.·E:~ 
~ m M ~ 

I<D7 DIP.SWITt\l 
(HJG!-1 ·oRDER 

Hfl< DIGIT) 

Figure L15.10: 7555 feeds period-meter: counter now can measure capacitance 

Try a 0.01 J.!F capacitor, and rig the clock rate so that the counter reads "0010." (You may 
see some flicker in the display; the counter's result must be uncertain to one bit.) 

Try adding another 0.01 in parallel. Does the meter appear to remember the effect of 
paralleling capacitors? If the value is not precisely what you would predict, you will have 
to decide whether to trust the meter or the nominal value on the capacitor. Have some fun 
trying other C values. 

Can you be sure the counter is not overflowing? Can you devise a circuit that would alert 
you to an overflow by lighting an LED and leaving it on until you reset it by hand? 

When you have had enough of your C-meter, restore the counter and display connections 
to their former state, so that we can use the counter next time for its usual purpose: to 
provide an address for the memory that you will install in the next lab. 
Specifically, remember-

• enable the address displays continuously: tie En* low 

• remove the one-shot and 7555. You will not need either of those circuits again. 
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Elements of today's circuit: private breadboard; keypad 
Here we will make a few suggestions on wiring this big circuit, and then will describe the 

keypad that you begin to use today, and that you will rely on throughout the micro labs. 

Breadboard, & Circuit layout 
Don't worry about finding the best way to lay out your circuit. Aim to be moderately 

neat (the too-tidy sometimes get less done than the moderately untidy; the slobs do get into 
trouble). Being 'neat' means primarily keeping wires short: wiring that is short and close to 
the board is likely to survive a bump of the hand-and a board that you find reasonably 
pretty will help you enjoy the many hours you will spend handling this little circuit. 

Ribbon Cable 

Color-coded ribbon cable is available for bussed signals. It makes good sense to follow 
the resistor color code (though some people avoid black, reserving it for ground; they color 
Data Line zero brown, rather than black). Use the large black cable stripper for this cable, if 
you have one in the lab. It will strip up to 6 wires at once. It is probably best to separate the 
last few inches of a ribbon cable of 8 or more lines into groups of no more than 4 lines: that 
makes it easier to place the wires into the breadboard, and reduces the chance that the lines 
at either end of a wide cable will pop out of the board. 

Quieting the Power Supply 
Sprinkle decoupling capacitors liberally through your circuit, at least one set per 
breadboard strip. These should be ceramic capacitors of 0.01 to 0.2 j..LF, between +5v and 
ground, to kill high-frequency noise caused by current surges on ground and +5. In 
addition, you should use a big tantalum capacitor (1 to 15 j..LF) as well as a small ceramic 
where power enters the board. 

Keypad 

6 J il---- ,-- U/'Dr----
_.L L·----+--ldehouncer '-./tdrCIJ<I---

',-· J.(cvr 1-----
L------''---J 

Figure LlS.ll: Keypad: sketch 

The keypad's main function is to provide a byte of data, which you will be able to load 
into memory. (When the memory becomes part of a computer, the values that you load 
from the keypad will constitute programs and data.) The keypad also provides some useful 
control functions: its debounced control buttons (those that run up the left edge of the board) 
can be used to clock the counter, and can be used to assert the lines that execute a write to 
memory. We will also exploit the keypad to help us load an initial value into the counter. 

A pinout and a description of the keypad's several outputs follows. 
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Keypad: Pinout and Functions 

The keypad's main job is to convert two successive key pressings into an 8-bit value. 

In addition, however, the keypad provides five function buttons and three slide switches. 
Most, but not quite all of these are self-explanatory. 

Here is the pinout of the connector that links the keypad to your computer. The 
connector is a 16-pin DIP form, shaped just like an IC. It is also powered like an ordinary 
digital IC: at the comers. 

RESET ....... 

(WA 
lcifJ 

HI 

Figure L15.14: Function keys 

Figure LlS.U: Keypad connector pinout 

• Three Slide Switches These provide logic levels 
to control three functions important in the 
microcomputer labs. You can ignore these lines 
today, but later they will drive Step*/Run, 
Busrequest* and Reset*. Their circuitry is odd 
enough to require some explanation: 

f5V 

l 4-10 

IF~~-
- -
Figure L15.13: Slide switches 

This RC is included because of the special vulnerability to 
cross-talk of signals carried on a ribbon cable. Note that 
these slide-switch signals travel on the ribbon cable between 
other control signals. We want to make sure that an edge on 
one line does not generate a false edge on another line 
nearby in the cable. 

The capacitor protects against such cross-talk in two 
ways: 

The capacitor slows the edge of the slide 
switch signal, so as not to cause cross-talk 
to an adjacent line; 
the capacitor also provides a low
impedance that tends to kill cross-talk that 
might be impressed by an edge appearing 
on an adjacent line. 
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• Write* 
The KWR* line stays low so long as the Write* button is down. The signal 

is de bounced. (We call the signal KWR * to distinguish it from a later Write* 
signal that will come from the CPU.) 

• W&I 
Write and Increment operates as Write* does, and in addition gives a rising 

edge on the address-counter clock line (AdrClk), a few milliseconds after release of 
the button. Thus the write occurs, and then the address counter is incremented to 
allow writing to the next location. 

1-<.WR 

12ms 
Adt(li< 

Figure L15.15: Write* & increment timing 

• INC 
Clocks the address counter, by providing a low pulse of about 2 J..lsecond on the 
AdrClk line. 

• RPT 

:~~2)-IS 
AdrC/k~ 

Figure L15.16: AdrClk signal 

Repeats AdrClk signal at 20 Hertz (the keypad can be jumpered to make this rate 
10Hz). 

• DN 
Does two jobs: when pressed once, decrements counter; when held down along 
with RPT, counts down at 20Hz. (DN drives the address counter's Up*/Dn line 
high.) 

Schematic of Keypad circuit follows 
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Figure Ll5.17: Schematic of keypad circuit (this circuit available as a completed device; see Parts list) 



Class 16: Memory; Buses; State Machines 
Topics: 

• buses: where 3-states are required 
• memories 

defined: a way of organizing stored bits 
types: ROM/RAM, dynamic/static, etc. 
characteristics: most important: access time 

• state machines 

generally 
even a humble J-K from D's demonstrates the general technique 
using gates vs using memory 
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fancy example: vending machine (this is done as a worked example, using 
memory) 

1. Buses 
These are just lines that make lots of stops, picking up and letting off anyone who needs a 

ride. The origin of the word is the same as the origin of the word for the thing that rolls 
along city streets. 

Power buses carry +5 and ground to each chip; data and address buses go to many chips 
in a computer. 

When are three-states needed? 

Answer: whenever more than one driver (or "talker," to put it informally) is tied to one 
wire. 

The presence of more than one receiver (or "listener") does not call for 3-states. (Think 
of a telephone party line, if you find yourself confused on this score.) 
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Test yourself: in the circuit below, where are 3-states needed? 

address d ta 

CPU 

Figure Nl6.1: Where are 3-states needed? 

Example of 3 -state use in today' s lab: Data Bus 

And here's a part of the circuit you will build today. One 3-state is shown; another is 
implicit. 

8 I<EYPAD DATA BUS 

Figure N16.2: Example of 3-state use in Lab 16: data buffer meets memory 

The '541 keeps the keypad from monopolizing the data bus. What keeps the RAM from 
hogging the bus all the time? (Note that the RAM's OE*, its explicit 3-state control, is tied 
low-asserted-all the time). 

Answer: the RAM's WE* pin turns off the RAM's 3-states when asserted (low). 
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2. Memory 
Text sec. 11.12 
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A memory is an array of flip-flops (or other devices each of which can hold a bit of 
information), organized in a particular way. A memory is used most often, as you know, to 
hold data and program for a computer; it can also be used to generate a combinational logic 
function-as you will see in Lab 16. So applied, it resembles the logic arrays or PALs 
described in the Text. 

Text sec. 8.15 

Organization in "memory" form 
8 bits can be stored in a register, as you know. The register is just a collection of flip

flops, with all D's and Q's brought out in parallel. 
Those 8 bits can also be stored in memory form. In that case, the inputs and outputs can 

be multiplexed onto one line. 
r-------------------~ 
I I 

I 

)ftTA 

f--+--ovr 

WE--+--Q 
I 

I I 
I .3 I 
1 addres 1 
L---------------i~--J 

!1 2 At Arp 

Figure N16.3: Register versus memory organization of stored bits 

At first glance the memory looks silly: a lot of extra internal hardware just to save a few 
pins? Let's count pins: 

Function 
data In 

data Out 

clock/write 
power, ground 

address 

total 

Register 

8 

8 

2 
0 

19 

Memory 
1 

1 

2 
3 

or 1 for In & Out 

7 or8 

Figure N16.4: Pin count: register versus memory 

The memory advantage doesn't look exciting-until you crank up the number of stored bits. 
Then the memory reveals that it is the only feasible way to store the information (try 
counting pins on a lMbit memory reorganized as a register, for example). In fact, 
memories nearly always 'squeeze away one more pin: they combine input and output into 
one pin. (Can you invent the internal logic that allows this?) 

It also mates nicely with present computers, which usually process only one item of 
information at a time. 
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That's all there is to the concept of a memory. Now on to the jargon. 

Memory types; memory jargon 
Text sec.11.12, again 

One can slice the universe of memory types in several ways: 

storage technology flip-flops: called "static" RAM, versus capacitors: called "dynamic" 
RAM. 
One can tell that these names must have been invented by the 
manufacturers of the dynamic memories: the ones that use 
capacitors. Cap memories aptly could be named "forgettories" (to 
steal a word from the Text), since they forget after a couple of 
milliseconds! These memories need continual reading or pseudo
reading, to "refresh" their capacitors. Despite their seeming 
clumsiness, dynamic RAMs enjoy the single advantage that their 
remembering unit is very small and uses little power; so, most large 
memories are dynamic. 

can one write to the memory? 
If Yes, easily, it's called a RAM-a misnomer, since all these 
semiconductor memories are "random access memories" (excepting 
only "bubble memories"). 
If No, it's called a ROM ("read only memory:" this name fits). 
If No, not unless you work pretty hard, it's called a PROM 
("programmable read-only memory"). 

PROMs subdivide further: 

If you cannot erase it-say, if you program it by blowing 
little fuses-its just a PROM; 

If you can erase it with ultraviolet light, it's called an 
EPROM (pronounced "Ee-Prom"). Here the information is 
stored on a capacitor-but the discharge time is 10 to 20 
years! 

If you can erase it electrically (that's handy), it's called an 
EEPROM (pronounced "Ee-Ee-Prom") or EAPROM 
("electrically alterable ... "). 

does the chip forget when the power is turned off? 
If yes, as is usual for a RAM, it's called "volatile." 
If No, it's non-volatile: usually this is a trick reserved for ROM's; 
some RAMs achieve non-volatility sneakily: 

battery-backup: a low-power memory, made of CMOS, can 
hold its data for years on microamps. Hence the sneaky 
"chubby RAM"-not its official name: 
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Figure N16.5: Chubby RAM acts like RAM, but remembers for 10 years. You can 
guess why the package is fat. 

A variation on this scheme: a battery socket with battery and 
power-down/up circuitry. 

other backup schemes are used, too, such as 'shadow
RAM': it's a RAM with a non-volatile memory attached, 
which can be updated from the RAM before power-down. 

How memories are specified: 

Organization: "#-of-words X word-length." For example, the RAM you will use in the 
lab is 8K X 8: 8192 words (or locations), each 8 bits wide. 

The most important memory characteristic, once you have settled on a type and size, is 
access time: the delay between presentation of a valid address ('your' job) and delivery of 
valid data (the memory's job). 

Static RAM Timing 
Text sec.ll.l2, 
jig.ll.30 (a) 

\'resent 
an ctddres-:. ... 

addr~ss 

... and dctta 
com~ out 

OE 

good address to gocd ddta := acceo;s t\me. 

K------IJ.omi~;5 >I 

+o max 

Figure N16.6: Read timing for 120ns static RAM 

When you have wired your microcomputer you will be able to see the access time: the delay 
between chip enable, in that case, and good data. If you're feeling energetic at that point, 
take a look. 



380 Class 16: Memory; Buses; State Machines Nl6-6 

Multiple RAM enables 

A diagram of what's inside the RAM may help explain its strangely-complicated 
enabling scheme. 

row 
addre~5 
decoder 

C.E 

)------c.~: 

N\EHOR'r 
CELL 
AFU\A'( 

column addre55 
decoder 

-fol'" low-l'o~r slaM~, 
Tum internal CE o+( 

Figure N16.7: RAM block diagram. showing what the 3 enables do 

3. "State Machine:" New name for old notion. 

A counter is the most familiar of state machines: a sequential device that walks through 
predictable sequences of "states." (A state, you will recall, is defined as the set of outputs 
on the device's flip-flops.) That sounds complicated; but if you apply the notion to a simple 
counter you will see that the idea is simple and, indeed, familiar. Here, as a reminder, is a 
2-bit counter and the "state diagram" that shows, rather abstractly, how the counter behaves: 

LABEL Q, Q 0 

A oo 
B 01 

c 1 0 

D 1 1 

Figure N16.8: 2-bit counter: flow and state diagram 
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Designing Any Sequential Circuit: Beyond Counters 
Text sec. 8.18, 
:ig. 8.57, p. 512 

Here is a diagram showing any clocked sequential circuit. 

OUTPUTS 

Figure N16.9: Sequential circuit: general model 
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As you can see, the D flops will take the levels at the D inputs and transfer them to their 
Q's after the next clock. Thus the circuit Q's will go from their present state to the values 
on the D's on the next clock; the values on the D's thus show the circuit's next state. 

The Text shows how to use this notion to design a divide-by-three counter. 
Here we propose to begin with a simpler assignment: 

1) Designing a J-K Flop 

Our aim is simply to design a circuit that behaves like a J-K flip-flop, given aD flop. The 
technique is the same: describe what the circuit should do after the next clock, given its 
present state and what is coming in on its inputs . 

.]" 

K 

Figure N16.10: A particular sequential circuit: J-K behavior from D flop+ logic 

"External Inputs:" Present State Next State 
LK Q,. o .... t-D 
0 0 0 0 

1 1 
0 1 0 0 

1 0 
0 0 1 

1 1 
1 1 0 1 

1 0 

Figure N16.11: Present-state- next-state table for J-K flop 

One can scan for the logic pattern, or one can draw this Next-State function (the function 
that is to feed the D input) on a Karnaugh map: 
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r-----------------, 

} 

Qn+, = D 

l value ot Q aHe~ ont. 

K 

I 
I 
I 

more <lo<i(; :: 1 r1ext state'; 
also "'!>, !>in<.e c\ l>-f lop 
just phse~ l> t. Q 

I elk I 

L-----------------J 

J" -K +~om D 

Figure N16.12: K-map ofD input as function ofQ, J, K; a gate implementation 

2) Designing a Divide-by-Three Counter 

The Text does this exercise, so we will only sketch this problem, here: 

PS 

0 0 
0 1 
1 1 
1 0 

NS 

0 1 
1 0 
X X 
0 0 

Figure N16.13: A particular sequential circuit: divide-by-three counter, from d flop + logic 

This circuit, you will notice, uses no external inputs, but requires two flops. 

3) Designing a Divide-by-Five Counter 

N16-8 

Now you are getting the idea, and you can see that any other counter presents 
fundamentally the same design problem. Here is a slightly bigger counter: 

ps 

000 
oo 1 
0 I 0 
0 1 1 

0 0 
0 1 

~ 0 
1 1 

NS 

/0-@8 001 
0 1 0 0 ) 0 I 1 
1 0 0 

~0 0 0 0 
;x 
)( ®00 X 

ThY"ee unused stotes : 
Where. should the~ 90 ? 
INhe-re slloul d -\:he~ ~ qo? 

Figure N16.14: A particular sequential circuit: divide-by-five counter 
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4) Circuits requiring Complicated Combinational Logic: a Memory can replace the 
combinational gating 

A divide-by-256 counter is not hard, as you know, because the behavior of a binary 
counter is so orderly; you can design one stage and then cascade like stages. But imagine 
trying to do the job with D flops, the way we have done the +3 and +5 counters: the Q's 
present 8 variables: quite unmanageable as a K-map problem! 

It would be nice to have another way to generate the logic that feeds the flops. It turns 
out we do have another way--described in another set of notes: the use of memory. With 
such a device we need hardly use our heads at all; instead, we use the address lines of the 
memory to carry the input variables and present-state bits; we use the data lines of the 
memory to deliver the output functions while also generating the next-state information. 

n n 

elk 

Figure N16.15: Combinational logic, in sequential circuit, implemented with memory 

On the general circuit diagram, this change is not substantial; but to the designer the 
change is large: your design task is now much simplified. You can design arbitrary state 
machines, and you can toss in extra memory data bits, if you like, in order to implement 
arbitrary output functions as part of the deal. The memory does the work for you. You will 
find an example of this technique worked as the 'vending machine' Worked Example. 

Recapitulation: Several Possible Sequential Machines 

• If there are no external inputs, the circuit may be a counter (it could be binary or 
decade, for example; it could even count in some strange sequence; but it can 
perform just one trick; its next state will depend upon its present state alone). 

• If there is one external input: then this could be an up/down counter, for example, 
or-more generally-a device capable of two tricks. 

• If there are eight external inputs: then this sequential machine would be capable of 
running many alternative sequences: 256 of them. Such a machine sounds far out, 
but you will meet it soon in the form of a microprocessor (and the one you will use 
is fed 16 inputs). The 8 or 16 input lines select one out of its large repertoire of 
tricks at a time; these input lines are said to carry "instructions" to the processor. A 
sequence of instructions, as every toddler nowadays knows, is called a program. 
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Ch. 8: Worked Examples: State Machines 
Three examples: 

• a washing machine controller, made with counter and decoder 
• a small but conventional state machine, using gates and flops: detect a particular 

sequence on an input line 
• a bigger state machine, but implemented in a wonderfully easy way: Text's vending 

machine, done with memory rather than with gates (PAL or discrete). 

The washing machine controller sidesteps the usual process, and demonstrates a technique 
useful for very simple sequencers. The second example-the sequence detector-shows a 
useful machine, but one that turns out to be susceptible to a subversively-easy 
implementation by another method. The last example shows off nicely how easy ROM can 
make the design of state machines; this method is an easier variation on the usual scheme, 
which would use a logic array to the job we do here with a ROM. 

Lurking behind all these examples lies the competitor for any relatively slow sequential 
operations: the microprocessor. It would do the vending machine job easily, and probably 
would be preferable there. It might well be too slow for the task of detecting a sequence 
coming in on a serial line. So, there is room for sequential machines like those we describe 
here. 

1. Sequencer from Standard Counter 
Before we take you through the more traditional design process, let's admit that one 

sometimes can sidestep such work by combining a counter and decoder. 
Text sec. 8.17, 
Decoder: see pp. 496-47,fig. 8.35 

Let's suppose our task is to control a washing machine: 

Problem: Washing machine controller 
Suppose we want to replace the usual wheel-and-cam timer that controls a washing 

machine with a digital sequencer (we want to be able to boast "digitally 
controlled!"-even though our design may work no better than the old mechanical 
one). 

We are given a 1 kHz clock, and the machine is to walk through this sequence: 
Operation How long? 
fill 100 seconds 
wash 200 seconds 
rinse 200 seconds 
drain 100 seconds 

Show how to use a + 16 counter plus a 3 -to-8 decoder, and other parts as needed, to 
generate the signals that could control the switches called "fill, wash, rinse, and drain." 
At the end of a cycle, let all functions shut off. A manual Reset* pushbutton should 
start a new cycle. 
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A solution 

1 kHz 
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Rt.<;,iART 

o.o1 Hz 

14- He 
ibl 

Q, t-----1 
Co 3-to-S 

dec.ocle~ 

stop5 counter 
<1\1 fur\dtons oH u~i:<l 
RE>iAf\i button ,5 puYied, 
~-<ar-t'n9 c':Jdo anew 

Figure X16.1: Sketch of counter use in washing machine sequencer 
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This circuit starts up in an annoying way: it may wait as long as 100 seconds after the 
Reset* button is pushed before beginning to fill. You may want to invent a way to eliminate 
this annoyance. 

Glitches 

We don't need to worry about nanosecond timing issues in this application: the sluggish 
electromechanical controls here (solenoid valves and motors) aren't fussy. In another 
setting, however, you might need to check the timing of this circuit: do two decoder outputs 
ever overlap? Do two circuit outputs? Is there ever a time when no output is asserted? 

Even without looking at the specifications for the decoder we can see that the answer to 
some of these questions is yes: the delay path for "fill" and "drain" is shorter than the delay 
path for "wash" and "rinse." That should produce a brief overlap in one case, gap in the 
other. 

2. Sequence Detector 

Problem: 

Sequence Detector 

Design a synchronous circuit that detects the sequence 011 coming in on 
one line. The levels are to be sampled as usual, on the rising edge of the 
clock, and 011 on 3 successive clocks should send the circuit's output 
high for one clock period. 

You might think of this gadget as part of a sort of paging system, with each person (or 
device) alerted when his (or its) code appears. To keep things simple, we have made this 
device synchronous, as usual: that means we'll use clocked flops in the feedback loop, not 
just the generic 'delay elements' we are forced to consider when we design circuits that lack 
clocks. A practical sequence-detector would more probably work the other way: it would 
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be asynchronous. Such a device is harder to design, and in this course we will dodge that 
topic entirely. 

State diagram 
Here is a graphic way to say, 'It detects 011.' 

Figure X16.2: State diagram for a machine to detect the sequence 0 II 

State Table 
We can say this once more, this time making a table that relates Present State to Next 

State. We do this, first, speaking of the states with their arbitrary and rather abstract labels, 
A, B ... , and then with the Boolean combinations into which we choose (arbitrarily) to 
encode those states: 00, 01.. .: 

PS- NS PS -NS 

USil\9 labels : 

\NP\JT OUTPUi 
IN 

0 1 9.1 h 0 

A A. B 0 0 0 0 0 01 

B "' c. 0 0 0 0 ' c "' c 1 1 0 0 0 

c "' c 0 1 0 0 0 1 0 

Figure X16.3: Present-state--next-state tables: using labels, and using Boolean combinations 

Getting equations from state table 

Since we intend to useD flops (not J-K), our design task is nearly over: the Next State 
table defines what we should feed to the D inputs (since a D flop simply passes to Q what it 
sees at D, on each clock). Here is the PS-NS table broken into two pieces, one for each of 
the variables: Qn +l or On (these are the same: the subscript "n+ 1" means, "After one more 
clock"): 

'h \N 
'l.o 0 

o ol--"'o'-+-?o
1
;,-¥"'-/-, 'h 

01 0 

1 1 0 

10 0 

<j.1M 1 = D1 =: IN ( '\, 1 t '\o) 

Figure X16.4: PS-NS table broken into two pieces-now simply Kamaugh maps, thanks to our choice of binary codes for the 
several states. 
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Output 

That's all there is to it, except that you need some logic to make an output appear in a 
particular state: here, state C. A two-input AND gate will do, here: 

Full Circuit 

'~-'=Q-ou1 
'\o 

Figure X16.5: Output function: just detects the 'Got it!' state (state C) 

Here is what the whole circuit would look like: 

OUT 

Figure X16.6: 011 detector: full circuit (conventional state machine design) 

An easier way, for this application: shift register 

The state machine we just designed can be mimicked with a simple shift-register. That's 
too bad: it seems to undermine our claim that state machines and the design procedure we 
just went through are useful. It need not do that. It means only that this application is not 
well-suited to the laborious method just set forth. Here's the shift-register circuit that does 
about the same job: 

OU1 

Figure X16.7: Shift-register wired to detect a particular sequence: 011. 

A shift register cannot usually stand in for a traditional state machine. It is not so versatile. 
The shift register happens to be good at this operation-essentially a serial-to-parallel 
translation. And even in this application, the shift-register calls for a lot of flops: n flops to 
detect a sequence n-bits long (versus log2n flops for a conventional design). 
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3. Improved Vending machine, done with ROM rather than gates 

The text works through the design of a vending machine, in order to demonstrate both the 
notion of clocked sequential machine and the way that PALs can ease the programming of 
sequential devices. That example can be done very easily if a memory replaces the PAL. 
The PAL is cheaper and faster than the ROM, but requires a Boolean minimizer; the ROM 
implementation requires only a pencil and paper, and no cleverness at all. 

Let's state the problem anew, with refinements: 
Text sec. 8.27, 
p. 533-537 

Problem: 

Vending machine 
Duplicate the design of the Text's vending machine, but this time use a 
ROM in place of gates, and let the machine also give correct change 
along with a bottle of pop. 

The original problem, you will recall, used a coin sensor that put out a 
strobe and a 2-bit code defining the input coin. 25 cents is to cause a 
bottle to drop. (This is an antique machine!) 
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Now let's do the problem, in stages: 

State Diagram 
We need to add states to the original state diagram: the machine needs to "know" how 

much money it has received above the 25-cent price: "25-cents-or-more" must be divided 
into all the possible amounts "more," so as to deliver the right change. 

Compare Text Fig. 8.80, 
,'1. 535 

aJV>~a.~s 
( Tnis we ecCbrY\1'1'5h w c th.) 
\as~~tl'wonovs re..,e.t 

Figure X16.8: A few states added to original state diagram, to let machine keep track of change that it owes 

We need four more states. What differences will that make to the design task? 

How many flops? 
Now there are ten states. 3 flops no longer will suffice (as they did in the Text example); 

we needfour flops. They permit 16 states, but we don't mind wasting 6 (we haven't any 
choice, in fact!). 
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A preliminary circuit diagram 

Now we can sketch the circuit, postponing just a few details. The diagram looks almost 
exactly like a generic state machine's, but it shows how many inputs and outputs we need, 
and shows signal sources and destinations: 

@ 

COIN 
SENSOR 

Figure X16.9: Vending machine sketched: shows the general design, and how many inputs and outputs to expect 

ROM contents 

Now, to make the machine perform we need to build that block at the top of the generic 
diagram labeled "combinational logic," a block that usually is implemented with gates 
(whether PAL, as in the Text example, or discrete). Here the task would be formidable if 
done with gates: one more flip-flop implies one more function coming out of the 
combinational block; that's not bad. But the added flop also implies an additional input 
signal going to the logic block: there now are six input variables: no longer manageable, 
even with sweat, by means of Kamaugh maps. Perhaps you could subdivide the problem. 
A computer minimizer like CUPL used in the Text example could handle those six variables 
easily; but the required gates no longer would fit within the particular PAL used in the 
Text's example. 

These problems are soluble (use a more complex PLD). But we can sidestep all these 
difficulties by using a ROM. We'll just store as data whatever next state we want; that will 
feed the D flops. Clock them, and we'll land at that next state. Very simple. In addition, 
when we want an output, we get it almost free just use an additional bit in the data word. 

Here's the idea: 

ROM ,------------------, 
D~IA STORED 1 
at each adci<"es5 

-+---4- -3-
NEXT $TA.TE 

I 

Figure X16.10: ROM providing next state and output information 
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Now all that remains is to load the ROM. We know, from the state diagram, the Present
State-> Next-State pattern; we need to translate that into binary codes. Let's start by listing 
the present states, and assigning them arbitrary binary codings: 

State and coin codes 
Money 
so far 

0 
5 
10 
15 
20 
25 
30 
35 
40 
45 

State 

A 
B 
c 
D 
E 
F 
G 
H 
I 
J 

R.i.ru!n: code (arbitrary) 

()()()() 

0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 

Coin codes 

slug 00 
5 01 
10 10 
25 11 

Figure X16.11: Codes assigned to states and coin inputs 

Now let's plug these state and coin codes into the Present-State-> Next-State tables (we'll 
do only some of this: how long is the full memory table, by the way?). 

Present State-> Next State: encoded 

Using Labels: 
PS coin IN 

0 slug 

5 

5 
10 
25 
slug 
5 
10 
25 

NS 

0 
5 
10 
25 
5 
10 
15 
30 

10 slug 10 

Encoded 
PS Coin code 

0000 ()() 
01 
10 
11 

0001 ()() 
01 
10 
11 

0010 ()() 
01 
10 
11 !._ io ~i 

Ifyouhov~~;:.~~ 
... you get this much. 

NS 

0000 
0001 
0010 
0101 

0001 
0010 
0011 
0110 

0010 
0011 
0100 
0111 

Figure X16.12: Sample ROM entries: Next State information stored for three Present States 

... and so on. Since the table is long, the process of writing out all next-state entries is tedious; 
but this work calls for no cleverness at all. We know the ROM can do the job (no need to 
count product terms, as in the PAL implementation). The ROM is perfectly indifferent to the 
patterns we put in. 

Outputs 

To get a pop bottle and change out of this machine, we need to detect particular machine 
states and then make things happen: drop bottle, or drop (particular amount of-) change. 
That may sound as if it implies that we need some AND gates; but no, the memory can do this 
job for us, too. 

To make change for us we can use hardware that delivers one coin (of the chosen 
denomination) for one pulse (perhaps the pulse drives a solenoid). Such a scheme lets us 
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return appropriate change by putting out a bit pattern that releases this and that coin. (To keep 
things simple, let's give ourselves two stacks of dimes, so that we can put out 20 cents' 
change in one operation.) 

Here's the idea: 

STATE 

20 
25 
30 
35 
40 
45 

CHANGE NEEDED DROP POP? 

0 
1 

5 1 
10 1 
15 1 
20 1 

dime.~ 

chan9e code 
Dz 
D1 

iROM Do 

[)3 
d~op pop ? 

CHANGE CODE 
ili. ilil n 
000 
000 
001 
010 
011 
110 

Figure X16.13: Vending machine's output functions: drop pop & change codes 

Getting the machine to deliver the bottle and appropriate change now requires no more than 
adding 4 data bits to the stored words. 

How big is the required memory? 

Not very big: 

state information 4 bits: this calls for 4 data bits to define the next state, and 4 
address lines to select the next state entry. 

input information 2 bits (this code defines which coin has just come in): these 
are address lines, and do not imply need for additional data 
bits. Incidentally, the coin sensor also provides a strobe 
signal indicating that a valid coin-code is available. This 
strobe is used as clock, and is not treated as an "input" to the 
state machine, though it is a necessary signal. 

do-this, do-that 4 data bits carry this code (1 for bottle drop, 3 for change 
code). These bits imply no need for additional address lines. 

The memory needs 8 data lines, then, and 6 address lines: it would be called a 64 X 8 ROM: 
very small. 

Reset 
We have simplified our circuit, relative to the one implemented in the Text example, by 

providing an asynchronous Reset: a pushbutton that drives Reset* on the flops, and also kicks 
out all the coins accumulated on this pass. 
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The drop pop signal can do two other jobs for us: 

1. it can cause the accumulated coins to be gulped into the machine: the customer has 
his bottle; he no longer needs a refund. 

2. it can Reset the whole machine, setting up the next pass: a fresh start for the next 
customer. 

Whole Circuit 

Here, collecting the several subcircuits in one diagram, is the whole machine. This 
hardware description falls short of describing the circuit fully, of course-since the brains of 
the circuit lie in the ROM code! 

manuel 
+s n.5e.t 

L~r-r---.--+-

tb 

ore.fu"cl ~:tron~box 
/ " 
' " oo 

\ I 
I I 
I I 

ROM 

change c.ocle 

dco 
D.. pop 

' ' 1 • I I 

0 0 

~~ 
~nd 

Figure X16.14: Vending machine, including change-maker: full circuit 

Postscript on ROM versus gates & PALs, and both versus Microprocessors 

Having promoted the ROM implementation as easiest on your brain, we must admit again 
that this method is unusual. People who manufacture gadgets-like vending machines--don't 
mind making their digital designer work a few extra hours in order to save a half dollar per 
unit, and PALs are cheaper than ROMs. In addition, they run faster. That doesn't matter in 
this application but does matter in many others, of course. 

A microprocessor could do this task perfectly well and might well be the best choice, as we 
said at the outset. The micro could take care of lots of other operations at very little additional 
cost-it could drive a display, for example, to show the total accumulated change, or even 
drive a talker chip that might say, "Thirsty?" It is also the implementation easiest to modify, 
though the ROM comes in a pretty-close second. 
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Lab 16: Memory; State Machines 

Reading: 

Problems: 

This lab is in two parts: 

Ch. 8 to end (applications): Look again at sec. 
8.18; read 8.27, omitted last time, 
concentrating on state machines. 

Specific Advice: 
Concentrate on the outlines of the vending 

machine example in 8.27 (but don't worry 
about the details of PALs or CUPL' s 
notation). 

Ch. 11: 
sec. 11.12, re: memory (pp. 812-821) 

As an exercise, try to implement the vending 
machine state machine, using not a PAL as 
in the Text, but memory and flip-flops. This 
problem is done as a worked example. (The 
present lab demonstrates such a use of 
memory.) 

• The first part asks you to add memory-an 8K • 8 RAM-to the counter circuit 
you wired last time. This memory and its manual addressing and loading hardware 
will form the foundation of the small computer you soon will build. 

• The second part invites you to play with the machine you have constructed, by 
using it to make a versatile state machine. These machines provide an introduction 
to the microprocessor that you will meet in Lab 18. 

The first part is essential: you cannot proceed with the micro labs until you have installed 
the RAM. The second part is not essential: it demonstrates a concept fundamental to 
computers, but you can proceed without building these circuits. If you are very short of 
time, evidently you should do the first part and then squeeze in what you can of the second 
part. 

A: RAM 
The memory that your 16-bit counter is to address is a big array of CMOS flip-flops: 64K 

(= 65,536). These flops are arranged as 8K "words" or address locations, each word 
holding eight bits. The memory is "static:" it uses flip-flops, not capacitors to store its 
values; it therefore requires no refreshing. It is "volatile," in the sense that it forgets when 
it loses power; but it requires so little power that it can easily be kept alive with a pair of 
AA cells, as you later will show, when you begin to use the RAM to hold programs. Today 
we will omit this battery backup, because you are not likely to write anything valuable 
during today's session. 
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Because its outputs are equipped with three-states, the memory does not need separate In 
and Out lines. Its common data lines serve as outputs until WE* is asserted; at that time the 
3-state drivers are turned off and data lines serve as inputs: the RAM begins to listen. The 
data bus circuit shown takes advantage of this tidy scheme: we tum on our three-state 
drivers (an 8-bit buffer: the '541) with the same line that asserts WE*. Thus the RAM shuts 
off its 3-states just as we tum ours on, and vice versa. 1 

16-1 Data Buffer & RAM, Linked to Counter 
+!5 

KEYPAD 
DATA 
BUFFER 

(/Vote -fAat- these display~ show ~ 
the data bu.s, not file address: \,...., 
+hese--;:re a second se 1:- of lf, 7 
not f)le displ•~s wired /n La 6 !!i 
f() show -lhe address bus.) 

({rom '469 counters, (IJL'red L'n Lab 15) 
,----/ 

~ 
ADDRESS BUS 

Figure L16.1: Data Buffer & Display; Memory Pinout 

Install the RAM and the 3-state buffer that sits between keypad and data bus. This buffer 
prevents clashes between the keypad and other devices that sometimes drive the data bus: 
the RAM today, but soon also the CPU and peripherals. 

Note: a pinout label for the RAM appears in the pinout section, Appendix D of this 
Manual. We suggest that you photocopy that label and paste it onto the RAM. The label 
will save you a good deal of pin-counting. 

The data display shown is larger than what is necessary today: it can show 16 bits, but we 
need only 8 until the processor enters; therefore we blank the other 8 bits, for the time 
being. We suggest that you wire all 16 bits today, however, since you will need them later. 
Note that the two 8-bit displays (each a pair of two Hex display chips) are driven in parallel 
with the same 8 lines from the data bus. This probably looks silly, now. It will make sense 
later-when the CPU enters: for when the CPU drives 16 bits of data to these displays, it 
does so in two 8-bit passes. (We will take advantage of the display latches included within 
the display chips in order to make sure that the displays do not foolishly show us one piece 
of information twice.) 

The RAM address lines are to be driven, as you know, by the address counters already 
wired up. 

1. lh1s 1s roughly true, but not true to the nanosecond: the RAM, made of relal!vely slow CMOS, turns off more slowly than 
our driver turns on; so, the two drivers may clash for ten to twenty nanoseconds. But this "bus contention" is brief enough to 
be harmless. 
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Checkout 
Confirming that the memory remembers is as easy as it sounds: 

• Set up a value on the keypad by hitting two keys, say A, B. AB appears on the 
keypad display. 

• Push the WR * button: AB should appear on your breadboarded data display. If it 
does, you have wired the 3-state buffer properly (the '541): the AB is driven from 
keypad to data bus. 

• When you release WR *, AB should remain on the display: on release of WR *, the 
RAM resumes driving the data bus, showing us its stored byte. 

• Change the keypad value, without hitting WR*. The breadboard data value should 
not change. 

• Increment the address, then decrement; confirm that the value stored earlier 
remains. 

Works? Congratulations. 

B. State Machines 

16-2 A simple State Machine: Divide-by-3 Counter 
A counter is a special case of the general device, state machine. But since it is a familiar 

case, and relatively easy to design, let's review the notion by asking you to design and build 
a divide-by-three counter, using D flops and whatever gates you need. (If you are 
ambitious, feel free to use J-K flops instead of D's: they will require more work on your 
part, but may save you a gate or two. D's are perfectly adequate; they illustrate the 
technique just as well as J-K's do.) 

To make the problem fun-so that you don't just open the book to page 513 and find the 
Text's solution-let's change the sequence a bit: let's make the counter count down, from 3 
to 1: 
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00 
01 
11 
10 
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Next State 

Qlcu+ll QOcu+l) 

=DtDo 

XX (don't care) 
11 
10 
01 

Figure L16.2: Present-state- Next-state table for divide-by-3 down counter 
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We have written this list in a funny order so that it looks like a Karnaugh map without 
further manipulation. By grouping J's on this table, perhaps you can make out what logic is 
required. 

Incidentally, we spoiled the game for you, slightly: we decreed that you'll need two flip
flops, and that one state is wasted (the "don't care"). But you knew that, anyway. When 
you finish your design, you should check--on paper-to see that the unused state did not by 
chance get assigned as XX = 00. Why? 

Figure L16.3: Divide-by-three down counter: your design 

This example was simple (though perhaps not easy: no task is easy the first time you have to 
try it). The state machines described in the remainder of the lab are less simple-but much 
easier to design: they require no gating at all, leaving all that work to the RAM, instead. 

16-3 RAM-Based State Machine: 1: Register Added, to let RAM data define Next 
State 

We offer this exercise for two reasons: to illustrate a way to make complex state 
machines; and to foreshadow the microprocessor. We hope to let you feel the truth that the 
processor is only a specially-fancy version of devices you have seen before: it is a fancy 
state machine, cousin to plain counters; it differs in being spectacularly more versatile than 
any counter. 

We assume that when you begin this lab you have wired a circuit that allows you to 
address any location in RAM, and to load a value from the keypad into that location. 

As you have begun to prove to yourself (with lab exercise 16-2), one can build an 
arbitrary "state machine" by feeding next state values to the D's of some flops, then 
clocking the flops. Here you will get a chance to try out the very easiest way to generate 
those next state values: with a memory. 
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The RAM is well adapted to this job: address evokes data; that's in the nature of a 
memory. Applied in a state machine: 

ADDRESS(= present state) -->(evokes)--> DATA(= next state). 
Here's the idea-and then the corrected version, with a register of edge-triggered D flops 
"breaking the feedback path." 

J't"eSeflt 
~ta~ odr MEMoRY 

(~AM) 

next 
1 f"'~ 

da-t" ~Ate I sta ad.-

' 

h l~n~s 

UNSTABLE" 

I 
I 

I 
I 

I 
I 

M£t1o~\" 

(!?.AM) 

n line_c; 

STABLE 

Figure L16.4: RAM is well adapted to the present-> next task; it needs a register of flops to make it stable 

The flops are solving a problem you have seen before. The toggling D flop (a circuit you 
built in Lab 14) is stable if edge-triggering breaks the feedback path; it is not stable when 
enabled continuously. 

UNSTABLE 

e.d3e-+r'j3ere.d. F F 

STABLE 

Figure L16.5: A reminder of a similar case: the familiar toggling D-flop using similar hardware to achieve stability: bad and 
good circuits 

Ordinarily, one would use aD register to hold the "present state." (Some chips integrate 
memory and register onto a chip.) To save ourselves extra wiring, we use our pseudo-D 
register, the 74LS469 8-bit counter already installed. 

So long as the '469's LD* pin is asserted, you will recall, the '469 does not count; 
instead, it Loads the data presented at its 8 data inputs. When we want the counter to serve 
as a register, therefore, we will simply hold LD* low. 

We cannot tie that line permanently low, however, because we need to be able to use the 
counters as usual while we are putting data into memory ('setting up the program,' we 
might call this process). Therefore we must add a temporary Run*/Program" switch that 
asserts LD* only we when we want to Run the state machine. 

-------, 
nLoAp'' {~it: 1 

clS befO'f.e 
~tcroe 

...J 
LD 

Figure L16.6: Run*/Program Switch (temporary: remove after this lab) 
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And here is the full counter circuit (the RAM is not shown): 

I ?~ 11'~ z:o. 
L..::t c,N 7~ LS %q CooT p---c c,N 

I
I > 8-BfT uP/DDWN C.OU>ITE'R fl > 

U/D LD D¢ Dl DZ D3 D't Do n~ D7 Ci/D LD 

"I z_r 3 ~ 5 " 7 e 9 10 "I zl 

kEYPAD DATA "BUS KlJ¢ KD3 KD 

• CPU DATA BUS 

Figure L16.7: Octal D Register ('469 with LD* grounded) Fed by 3 bits of RAM Data: now feedback loop is closed 

The three lines driven from the data bus are driven, in this case, by the RAM data lines 
dO ... d2. Refer to figure 16.1 for the RAM pin numbers. 

Sample 'Program' 
Load the following data into RAM, at the bottom 8 locations (this requires setting the 

high-order addresses to zeros, using the keypad). 
Address (hexadecimal) Data 

(arbitrary) next address 

A15-A13 A12-A8 A7-A4 A3-AO D7-D4 D3-DO 

0 0 0 0 0 3 
1 D 5 
2 A 1 
3 B 2 
4 0 7 
5 F 4 
6 D 3 
7 0 6 

Figure L16-8: Data and Next-Address Loaded into RAM 

Try the circuit and program above, using the following procedure: 

1. Load the data into RAM; make sure that the address counter lies somewhere in the 
range 0-7; 

2. Flip the newly-added toggle switch to the Run* position. 

3_ Clock the '469, using "INC" button on the keypad. 

The data bus should show you the next address in the low nybble, and a sequence of letters 
in the high nybble. See if you can make out a message in the MSD 'arbitrary' data. (The 
messages in this lab are pretty silly; but then we have only the letters A through F to work 
with.) You can eliminate the distracting "next address" information from the display by 
blanking the right-hand display: temporarily wire its pin 4 to +5 v_ (No resistor needed_) 
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16-4 State Machine II: External Control Used to Select Sequence 

You can select between two alternative 'programs,' while these programs are running, by 
using an external line to take control of one of the RAM's address bits. Here is a diagram in 
the generalized "state machine" form, designed to remind you what we are doing: 

'%"! ~here_ used as 

RAM 

~'30 t' 

an oda.l D -~,Pe 
nJtsffr not!'as 
a co<Jn kr. (Nofe 
fkat CD 1s hed 
t.oW cuMn rvnmny) 

~ Se<;,uence . 1 ~led (while r-vnmni 

Figure L16.9: State Machine: External Control Added 

In order to allow ourselves to drive A3, we insert a toggle switch: in one position, it feeds the 
counter's 03 to the A3 input; this we use when putting in the values that 'program' the state 
machine. In the other position, the switch allows us to determine the level of A3, using a 
second switch, here called "sequence select." 

So, we use the switches as follows: 

• while putting in values: setup/go switch in setup position (A3 fed from counter's 
03); 

• while running the state machine: 

setup/go switch in go position 
sequence select switch in either position: can be changed at any time, to 
select one sequence or the other. 
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The 'State Machine' circuit, so far 
Here, to help you get some context for the small changes you have been making to your 

circuit, is the way your 'state machine' circuit looks: three bits define the changing 'present 
state' (out of the '469'); the RAM in turn delivers three bits of data, d0-d2, defining the 
machine's 'next state.' The other bits are constant, except for four data bits out of the RAM, 
which we use to display silly messages. 

,Messdge 
Dis jJ Ia !f 

(next 
addms) 

se..hp 
/~o 

.3 

__r:-<) oe. ·Q~-w..., Ci.or-{;(~ 

.,. '46~ (h:-order) 

I I 

'-' 

3 

(UP /M 1 of:her fines 
driup t1 <1.5 fw{Ore \ 

7 .,, 
rnext state) 

Figure L16.10: State machine circuit: '469s operating as D registers define present state; RAM delivers next state 

'+ 

3 

Now add the following "message" at memory locations 8 through F (hex) (or write any 
other message that entertains you). The earlier data is shown below as well; that data, which 
you entered in the preceding stage, should stay in place. (Again, you can, of course, enter any 
other message there as well: the point is only to illustrate that you can now select one 
sequence or another, using the manual switch that now drives A3.) 

Address (hexadecimal) Data 

(arbitrary): next address 

A15-Al3 A12-A8 A7-A4 A3-AO D7-D4 D3-DO 
(MESSAGE ONE; entered earlier) 

0 0 0 0 0 3 
1 D 5 
2 A 1 
3 B 2 

4 0 7 
5 F 4 
6 D 3 
7 0 6 

(MESSAGE TWO; enter now) 
8 D F 
9 A 8 
A E 9 
B D A 

c F D 
D E B 
E A c 
F c E 

Figure L16.11: Two-Sequence RAM Table: External Line Selects Sequence One vs. Two 
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Trying this circuit, you may find it convenient to use a slow square wave to clock the 
register (say, 2 Hz), while you confirm that you can select a sequence using the A3 switch. (If 
you like a story to make sense of these nonsense messages, imagine a power struggle between 
the proprietor of the Dead Cafe (Gulch, Ariz.) and his embittered former cook. The two of 
them wrestle over the Message One*{fwo switch that controls the sequence of letters to be 
displayed on the giant single-digit display that stands out in front, blinking in the desert night. 
Does that make this circuit more exciting?) 

We will stop here, hoping that this addition of one input that can steer the state machine is 
enough to let you imagine the way the scheme could be extended: 2 inputs would allow 4 
sequences or 'tricks;' and 16lines (as in the 68008, due to arrive in Lab 18) would allow 64K 
tricks. So, the 68008 is a big state machine; in principle, given enough time, perhaps you now 
could design such a microprocessor. But don't worry: that is not the next lab exercise. 
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Ch. 8: Review: Important Topics 

1. Some Genera/Ideas 

a. Boolean manipulation 

i. deMorgan's theorem the most important non-obvious notion 
ii. "active-low" and "assertion-level symbol" cause confusion, but useful 

and easy if you relax and don't fight them 

b. Hardware gate properties 

2. Devices 

i. Inputs: TIL versus CMOS: impedance; what floated inputs do 
ii. Outputs: TIL versus CMOS; 3-state; open-collector (rare, except in 

comparators, where it is standard) 

a. Combinational 

i. Gates: just a few standard functions 

1. AND, OR, NOT, XOR and the complemented-output versions 

ii. Larger building blocks 

1. multiplexer 
2. decoder/encoder 
3. adder 

b. Sequential 

i. flops: D; S-R; J-K 
ii. flops combined: 

1. shift register 
2. counters 

a. ripple 
b. synchronous 

i. loadable 
ii. up/down 

3. State machines 

iii. one-shots 

A generalization of counter; can be made with gating + flops, 
or with ROM + flops 

1. RC-timed (usual) 
2. digitally-timed (good if a clock is at hand) 
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Active-high /-low 

Assert 

Ch. 8.: Jargon and Terms 

Defines the level (high or low) in which a signal is "True." We 
avoid the term "True" because many people associate "True" with 
"High," and that is an association we must break. 

said of a signal. This is a strange word, chosen for its strangeness, to 
give it a neutrality that the phrase 'Make true' would lack. We can 
say, with equal propriety, "Assert dtack*," and "assert Ready." In 
the first case it means 'take it low;' in the second case it means 'take 
it high' (because the signal names reveal that the first signal is active 
low, the second active high) 

Assertion-level symbol 
This is a very strange phrase, meant to express a notion rather hard 
to express: it is a logic symbol, of the two that deMorgan teaches us 
always are equivalent, chosen to show active levels. So, a gate that 
AND's lows and drives a pin called EN*, should be drawn as an 
AND shape with bubbles at its inputs and output, even though its 
conventional name may be "OR." 

Asynchronous contrasted, of course, with synchronous: asynchronous devices do 
not share a common clock, and may have no clock at all. Most flip
flops use an asynchronous clear function, also called "jam-type." 

Clear force output(s) to zero. Applied only to sequential devices. Same as 
Reset. 

Combinational 

Decoder 

Edge-triggered 

Enable 

Float 

Flop 

Hold time 

(="combinatorial") of logic: output is a function of present inputs, 
not past (except for some brief propagation delay); contrasted with 
sequential (see below). 

combinational circuit that takes in a binary number and asserts one 
of its outputs defined by that input number. (Other decoders are 
possible; this is the one you will see in the Labs.) For example, a 
'138 is a 3-to-8 decoder that takes in a 3-bit binary number on its 3 
select lines; it responds by asserting one of its 8 outputs. 

describes flip-flop or counter clock behavior: the clock responds to a 
transition, not to a level. By far the most widely used scheme. 

The meaning varies with context, but generally it means 'Bring a 
chip to life:' let a counter count; let a decoder assert one of its 
outputs; turn on a 3-state buffer; and so on. 

(said of input, or of a 3-stated output): driven neither high nor low. 

lazy baby talk for "flip-flop," which is baby talk for "bistable 
multivibrator." But babies in this case express themselves better 
than old-fashioned physicists or engineers, who were inclined to say 
all those ugly syllables. (Flop is not to be confused, incidentally, 
with the acronym FLOP, a piece of computer jargon that stands for 
"Floating Point Operation".) 

time after a clock edge (or other timing signal) during which data 
inputs must be held stable. On new designs hold time normally is 
zero. 

Jam clear, jam load asynchronous clear, load: the sort that does not wait for a clock. 



Latch 

Load 

Multiplexer 

One-shot 

Preset 
Propagation delay 

Register 
Reset 
Ripple counter 

Sequential 

Set 

Setup time 

Shift register 

State 

State machine 

Synchronous 

Three-state 

Tri-state 

Ch. 8.: Jargon & Terms 

strictly, a transparent latch (see below), but often loosely used to 
mean register (edge-triggered) as well. 
a counter function by which the counter flops are loaded as if they 
were elements of a simple D-flop register. 
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("mux"): combinational circuit that passes one out of n inputs to the 
single output; uses a binary number code input on select line to 
determine which input is so routed. For example, a 4:1 mux uses 2 
select lines to route one its four inputs to the output. 
circuit that delivers one pulse in response to an input signal (usually 
called trigger), which may be a level or an edge. Most one-shots are 
timed by an RC circuit; some are timed by a clock signal, instead. 
Force output(s) of a sequential circuit high. Same as Set. 
Time for signal to pass through a device. Timed from crossing of 
logic threshold at input to crossing of logic threshold at output. 
set of D flip-flops, always edge-triggered 
same as Clear: means force output(s) to zero 
simple but annoying counter type: asynchronous: the Q of one flop 
drives the clock of the next. Slow to settle, and obliged to show 
many false transient states. 
of logic: circuit whose output depends on past as well as (in some 
cases) on present inputs. Example: a J-K flip-flop fed a 11 
combination: its next state depends on both its history and the JK 
values. Contrasted with combinational (above). 
same as Preset: means set output high (said only of flops and other 
sequential devices) 
time before clock during which data inputs must be held stable. 
Always non-zero. Worst-case number for a 74HC: about 20 ns. 
a set of D flops connected Q-of-one to D-of-the-next. Often used for 
conversion between parallel and serial data forms. 
condition of a sequential circuit, defined by the levels on its flip-flop 
outputs ("Q"'s). A counter's state, for example, is simply the 
combination of values on its Q's. 
short for "finite state machine"; sometimes, "FSM." A generalized 
description for any sequential circuit, since any steps through a 
determined sequence of states. Usually reserved for the machines 
that run through non-standard sequences. A toggle flip-flop and a 
+10 counter are FSM's, but never are so-called. A microprocessor 
executing its microcode is a state machine. 
sharing a common clock signal (syn-chron means same time). 
Synchronous functions (LD*, for example, or CLR *) "wait for the 
clock." 

describes a gate output capable of turning off instead of driving a 
High or Low logic level. Same as tri-state. 
a trade name for 3-state: Registered trademark of National 
Semiconductor. 
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CHAPTER9 

Class 17: Analog<-> Digital; Phase-Locked Loop 

Topics: 

old: 

new: 

• digital vs analog: digital is clean as a whistle; 
but crossing the boundary raises analog issues 

• How to convert between Analog and Digital forms 

- getting enough information: 
how fine to make the slices, in amplitude and in time. How many bits for 
a given resolution: error = 1/2 LSB. 

- conversion methods: 

* D/A: scaled current sources; "R-2R" ladder 

* AID methods 
• flash 
• integrating 

• feedback: binary search 
• Phase-locked loop 

- the scheme is simple 

... but the changes of units make the stability problem hard to grasp 

An old topic: 

analog vs digital 

The task of converting from either form to the other can be a challenging task in analog 
electronics: from analog to digital (ADC, A/D) one has to classify an input (usually a 
voltage), putting it into the correct digital category; often, one must do that fast. Running in 
the other direction (DAC, D/A) is easier, conceptually; but it is hard to do it precisely (good 
to many bits), and the digital processing will have added extraneous non-information, like 
'steppiness' in the sampled and recovered waveform; this junk must be cleaned away. 

Figure N17.1: An old issue revisited: analog to digital to analog again: includes delicate analog tasks 
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That cleaning job is a challenging analog task (the low-pass filter that cleans up the output 
of a digital-audio CO's output must do such a task). So, you can congratulate yourself on 
having taken the trouble to study some analog electronics, not falling for the notion that 
electronics is now simply digital. 

New topics: 

How fine to slice 

If you mean to convert a sine wave to digital form, then back again, you run at once into 
the problem how much information do you need to carry into the digital domain. You must 
be content with a limited number of slices in the vertical direction: amplitude; and in the 
horizontal direction: sampling rate. 

• Slices across the vertical axis: amplitude resolution 

This is a pretty straightforward issue. You decide, as usual, how big an error is 
tolerable. In this course, all the converters you build or use in the lab will be 8-bit 
devices; thus we'll settle for 256 voltage slices, each worth between 10 and 16 mV. 
Commercial digital audio cuts each of our slices into another 256 slices (16-bit 
resolution: 1 part in 64K). Our breadboarded circuits would bury any such 
pretended resolution in noise, as you know if you recall how big the usual fuzz is 
on your scope screen when you tum the gain all the way up. 

Size of error versus size of slice 

If a voltage range is sliced into n little slices, each labeled with a digital value, the value 
will be correct to 112 the size of the slice: "1/2 LSB," in the jargon. Perhaps this is obvious 
to you. If not, try this example: 

Example: 

How many bits are required for 0.01% resolution? 

0.01% is one part in 10,000. If a converter spans a 5-volt input range, for 
example, we mean that when we give a digital answer, like "4.411 V," we 
expect to be wrong by no more than 0.5 mV (1 part in 10,000 of the full-scale 
range: 0.5 m V /5V). 

s i3 e o{ er-r-or is 
Jz (siu of slice). 

=> slice /;, 
2. - J.--woo - ,-, ooiJ 

I ~ ::::. ~ ~ :z.1a 

Figure N17.2: What I mean when I claim to be right to 0.01%: I say the answer is 4.411V; I could be wrong 
by±O.SmV 

How many bits does the converter need? We can tolerate slices that are two 
parts in 10,000 wide, or l/5k. 12 bits give 4k slices, and give an error of l/8k: 
0.00012, which we can round off to 1 part in 10,000. 

• Slices across the horizontal axis: sampling rate 
Here the result is surprising, to anyone who has not considered the question before: 
Nyquist pointed out the curious fact that a shade more than two samples per period 
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of a sine wave will carry a full description of that sine wave; thus one can 
reconstruct the original with just that pair of samples. Here's the idea, illustrated 
with the converter you will see in the micro labs, picking up about three samples 
per period. The filtered output looks like the original (which is not shown): 

Figure Nl7.3: Confirming Nyquist's surprising claim: sine wave reconstructed from about 3 samples/period 

You will get a chance to reproduce this effect in Lab 21, when you control sampling rate 
with your microcomputer. Evidently, the sampling rate required depends upon the 
frequency of the analog waveform; if the waveform includes many frequency components, 
then it is the highest that concerns us; the lower frequencies are easier to catch. Commercial 
digital audio again provides a useful case in point: that system samples at about 44kHz 
("10% oversampling") in order to store and recover signals up to 20kHz. 

Effect of an inadequate sampling rate: "aliasing" 

If you don't do what Nyquist told you to do, you get into trouble. You don't just fail to 
get what you meant to get; you get nonsense: sampling at too low a rate, you get a sum and 
difference frequency; the difference signal shows up as a fake-"aliased"-low frequency. 
Here's an illustration: 

Nfnty of samjlles 

f,N-= U<Hlj 

fsd,.,p/e Z /J. /-(i-fz 

tJoi eno"J h >am;des· 
'D./iii sed ou+-fJut 

{tN ~ 1 {) /1/-/"l 
{sc;,.,p/e :o: 12 kHl. 

(ocdful shown {i/feced) 

Figure Nl7.4: Adequate versus inadequate sampling rate; the inadequate rate produces a fake, a/iased output signal 

To protect against aliasing, you need a good low-pass filter ahead of the AID input, to make 
sure that the dangerous frequencies never are fed to the converter. 

An informal argument for Nyquist 

Nyquist's claim becomes less surprising when one recalls that the Fourier series for a 
square wave would be reduced to a sine at the fundamental frequency, if we stripped away 
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all the the higher-frequency components. But the low-pass that filters a reconstructed sine 
does just such a stripping job. 

Figure N17.5: A casual confirmation of Nyquist's claim: just a pair of points can define a square wave; a good low-pass could 
be set to keep only the fundamental, a sine 

Enough generalities. Let's get back to hardware: let's look at some ways to carry out the 
conversion, in both directions. 

A. Analog <-> Digital Conversion Methods 

1) D to A (or "DAC") 

A D!A is conceptually simple 

All we need is a way to sum a binary-scaled set of voltages or currents: an input 1 at the 
LSB should generate output V, the next bit by itself should generate 2V; both together 
should generate 3V; and so on. 

You might use an op amp current-summing circuit, and resistors of values R, 2R, ... : 
Text sec. 9.16, 
p. 614, 616,fig. 9.45 

Figure )';17.6: A possible D/A-but hard to fabricate 

This method rarely is used, because it is difficult to fabricate many values of resistor to the 
required precision. 
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R-2RLadder 
Text sec. 9.15, 
pp. 614-17, 
figs. 9.46, 9.47 
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Instead, one can get the same result-a binary scaling of currents-with an ingenious 
circuit called an R-2R ladder. The ladder's virtue is that it requires just 2 resistor values, 
not n for an n-bit converter. Only the relative sizes of the two resistors are critical, so IC 
manufacturers like the ladder. 

The first circuit, below, uses such a ladder to source current into the summing junction of 
an op amp, as in the simpler op amp circuit shown in fig. N17.6; the second circuit (which 
shows the schematic of an IC D/A) omits the output op amp, with the result that the circuit 
output is a current. Both circuits use just two resistor values. 
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Figure Nl7.7: D/A using current switching 

Here is a way to arrange this scaling of currents in the several sources: 
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Figure N17.8: Scaled current sources using R-2R network 
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The ladder is formed out of units that look like the one on the left, below. 
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Figure N17.9: How an R-2R ladder divides down a voltage 
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Since the unit looks like 2R, seen from its left side, we can plug in another unit in place of 
its right-hand 2R-and so on, forever. At the right-hand end of each R, the voltage is down 
to 1/2 what it was at the left end of the resistor. (In both the D/A circuits diagrammed 
above, those diminishing voltages are applied across equal valued resistors so as to generate 
scaled currents.) 

.. But a good D/A is hard to build 

Though it is easy to draw a diagram for aD/A, it is difficult to make aD/A that works 
with good resolution: that is, responds properly to a large number of bits. In this course we 
will use modest 8-bit D/A's, which imply resolution down to 40mV, given a lOY-volt 
range. Our converters use a somewhat smaller range, pushing the analog value of a bit 
down to lOmV. But that we can manage, even in our breadboarded circuits. 

2) A to D (or "ADC") 

Converting in this direction allows lots of room for cleverness. Here, first, is a summary 
of the leading methods: 

Method: 
parallel feedback integratin~ 

(="flash'') binary-search dual-slope 
Characteristics: 

Fast, 
few bits 

Typical applications: 

middling speed 
good resolution 

slow 
best resolution 
can cancel line noise 

storage scopes general purpose DVM 
radar processing 

Figure N17.10: A spectrum of ND methods 
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1. Open-loop 

a) Flash 
Text sec. 9.20, pp. 621-22; 
compare fig. 9.49 
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We will start with the method that is conceptually simplest, though most difficult to 
fabricate: flash (or parallel) conversion. 
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Figure N17.11: Parallel or "flash" AID 
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This takes a lot of analog circuitry for a modest number of bits. A 9-bit converter needs 511 
comparators. That may not sound like a lot of parts, if you are accustomed to reading about 
million-transistor digital parts, and 4-megabit memories. But the fact that flash converters 
now are limited to about 9 or 10 bits underlines the point that precise, fast analog circuitry 
is hard to build, whereas fast digital circuitry is relatively easy: each of the outputs of a 50 
ns memory, say, needs to decide only whether the stored data is closer to High or to Low. 
Each comparator in a 9-bit, 5-volt-range converter, in contrast, needs to make a decision 
good to about 10 mV; and it needs to do it fast-in around 50-odd ns, to run at the same 
speed as the memory. The comparators' job evidently is much the harder of the two. 

b) Dual-Slope 
Text sec. 9.21, 
pp. 626-27 

We looked a single-slope converter in the class notes on counter applications, and it 
appears in Text sec. 9.20, Fig. 9.54. The single-slope measured the time a ramp took to 
reach V in· The dual slope converter is similar: it lets V in determine the size of a current that 
feeds a capacitor, for a fixed time; when the capacitor voltage has ramped up to a reference, 
a fixed current discharges the capacitor, and a counter measures the time for the discharge: 
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Text p. 627,fig. 956; 
compare p. 626,fig. 955 

Class 17: Analog<-> Digital; Phase-Locked Loop 413 

Noise <:an sum 

o ... tf',..d measures 
time. to disc.Aar'je 

Figure N17.U: Dual slope converter: charge for fixed time, at rate determined by Vin; measure time to discharge; integration 
can cancel periodic noise 

The dual slope differs, however, in one important respect from the single-slope converter 
and from all the other converters we describe in these notes: it is an integrating converter, 
so that variations above and below the average input voltage level tend to get swallowed up, 
not recorded as the true level. The swallowing-up is perfect if the converter takes in an 
integral number of periods of the interfering signal (the integral of that signal then is zero). 

So, you can get the right answer in the presence of periodic interference. In particular, if 
you expect periodic interference at 60Hz and its harmonics (as usually you can expect) you 
can let a conversion include an integral number of cycles of this signal; then the bumps 
above and below the average value will cancel. This is the method used in the lab's 
DVM's. 

2. Closed-loop: Successive-approximation & tracking 
Text sec. 9.20, 
pp. 622-24 

A closed-loop converter, and in particular, one that uses a binary search, beats either flash 
or dual-slope as a general purpose converter. The flash costs too much, and provides only 
mediocre resolution; the dual-slope is slow. The closed-loop converter works like a 
discrete-step op amp follower: it makes a digital "estimate;" converts that to its analog 
equivalent, and feeds that voltage back; a single comparator decides whether that estimate is 
too high or too low (relative to the analog input, of course); the comparator output tells the 
digital estimator which direction it ought to go as it forms its next, improved estimate. 
Here's a block diagram illustrating the notion. 

Anrl<>j 
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r--------, I Ana~ f- -- l 
In I / 
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L --::.. J 
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Figure N17.13: Two closed-loop NO converters: tracking and binary-search 

The tracking converter is dopey: it forms and improves its estimate simply by counting up 
or down. The successive-approximation estimator (SAR) is clever: it does a binary search, 
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starting always at the midpoint of the range, and asking the comparator which way to go 
next. As it proceeds, it goes always to the midpoint of the remaining range. That sounds 
complicated; in fact it is easy for a machine that is in its nature already binary. The 
comparator tells the binary-search device bit-by-bit whether the most recent estimate was 
too high or too low, relative to the analog input. 

Because of this gradual way of composing its answer, such a converter needs an output 
register: its digital estimates look funny, until the process is complete. In addition, the 
analog input should be passed through a sample-and-hold, which freezes the input to the 
converter during the conversion process. We leave this S&H off, in the lab; we lose 
certainty in sampling time. That translates, however, to considerable errors, for any 
processing of the signal-including the simplest: playback through a D/ A and low-pass 
filter-assumes periodic sampling. 

Here are a couple of contrasting waveforms showing the outputs of the feedback D/A's 
that show the analog estimates of the two converters. (These are the analog equivalents to 
the digital estimates, but don't forget that it is the digital values that we are after, not these 
analog equivalents! These are, after all, A/D's.) 

<:;tep- Inptd 
afllll''ed -Tv~ 

~ fracke> 
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converter> "-----;. 

r;,,'s volfajf' shown~~ S{o/)e jlholv: 
rP>?Onse of .6c-'-h Cu"vfrl-er> 

Figure N17.14: Tracker versus binary-search or successive-approximation converter: trying to follow a step input 

We present the tracker only in order to make the binary-search estimator look good. There 
are very few applications for which anyone would consider a tracker. 

C. AID Characteristics: speed & resolution 
As we suggested earlier in these notes, it is hard to make precise analog parts: hard to 

make, say, aD/A good to many bits. It's easy to make digital parts, and easy to string them 
together to handle many bits. It would be easy , for example, to build an up/down counter 
or SAR of 100 bits. So, it is the analog parts-the D/A and comparator-that limit the 
resolution of the closed-loop converter. They also limit the converter's speed: 
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clock 
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P.ro[.. seH:le delaj 
ael ~ 

"10ns 1000ns ?oons 1hns 
"";o:x 1"1\<l.'X P>\~')( ml-l< 

Figure N17.15: Closed-loop ND: clock period must allow time for all delays in loop 
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Recapitulation: the imporlant AID, D/A characteristics 
resolution 

I 
- ._- _- ~t reso/utt'on 

this is determined by the number of bits: n bits 
slice into 2n levels, give error of 1/2 LSB 
= 1/2 (1/2n), or 2-(n+l) 

speed 

0/I..!GINAL 

puts a ceiling on sampling rate, and sampling 
rate, in turn, puts a ceiling on the analog 
bandwidth ( = max. input frequency) that the 
converter can capture. The converter you build 
in lab can convert in about 1.6 !-lS; ==> max 
sampling rate 600kHz; ==> max analog input 
frequency of nearly 300kHz 

I 

/Z ECOAIST/1. U(T[?:, 

Typically steppy D/A output: reconstructed 
waveform: steppiness isn't bad; can be 
smoothed away by a good filter, so long as we 
have enough information about the input 
waveform: a shade over two samples/period at 
the minimum 

Figure N17.16: Summary of AID & sampling 
characteristics 

A binary search: example 

Here, for anyone not already convinced, is a demonstration of the strength of the binary 
search strategy, used by the "successive-approximation register" (SAR) you use in Lab 17. 
If someone chooses a number in the range 0 through 255 and tells you whether your SAR
like estimates are too low, you can get to the answer in 8 guesses. If you write out the 
binary equivalents of those guesses, you can see how the SAR forms its answer, bit by bit, 
proceeding from MSB to LSB. 
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Figure N17.17: Binary search: an example, and how a digital SAR would form the estimate, from MSB through LSB 
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B. Phase-Locked Loop 
Text sec. 9.27-9.31 

N17 -11 

A PLL uses feedback to produce a replica of an inputfrequency. It is a lot like an op 
amp circuit; the difference is that it amplifies not the voltage difference between the inputs, 
but the frequency or phase difference (once the frequencies match, as they do when the 
circuit is "locked," the remaining error is only a phase difference). The phase error signal 
is applied to a VCO in a sense that tends to diminish the phase error toward zero. 

This sounds familiar, doesn't it: -sounds like a discussion of an op amp circuit. 

?LL gene.riifes F;._,, of YCO 
flecessgrj to k!Qep M.ese {re-gvtf)c.ie.s 

ahoul ejwl t;ht~se c/;j'e_~:<Ence aJ/7sfq/1f; 
~¢'for one 'kin.d of dele.dor) 

Figure N17.18: Phase-locked loop 
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The scheme is simple. The only difficulty in making a PLL work lies in designing the loop 
filter. We'll postpone that issue for a few minutes. 

Phase Detectors 
Text sec. 9.27, 
p. 644 

The simplest phase detector, as the Text says, is just an XOR gate-a gate that detects 
inequality between its inputs. (We assume digital inputs; sine wave inputs require phase 
detectors that are different, though conceptually equivalent.) 
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Figure N17 .19: XOR phase detector: needs some phase difference, and it can be fooled) 
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The CMOS 4046 that you will meet in the lab includes a fancier phase detector-a state 
machine that generates correction signals during the time when one square wave's rising 
edge has led the other: 
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Figure N17.20: 4046 edge-sensitive phase detector, it's smarter than XOR, and cannot be fooled 

It uses a 3-state output, and when it's happy-when phase difference goes to zero-it shuts 
off its 3-state. At that time, the filter capacitor just holds its voltage, acting like a sample
and-hold, really, not like a filter at all. 
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Our PuT I (1-st a ted)l 
Figure N17.21: 4046 state diagram (after National Semiconductor data} 

The detector becomes unhappy when it finds one waveform rising before the other. The 
state machine notices which rising edge comes first. If A-the input signal--comes up 
before B, for example, the detector says to itself, "Oh, B is slow. Need to crank up the 
VCO a bit." So it steps into the right-hand block, where it turns on the upper transistor, 
squirting some charge into the filter capacitor. 

Then B comes up; A and B both are up, so this detector (like the XOR) sees equality, 
and goes back to the middle block, saying, "Everything looks OK for the moment; A and B 
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are behaving the same way." In the middle block, the output stage is off (3-srated); the 
capacitor just holds its last voltage. 

This pattern tends to force the VCO up, bringing B high a little earlier. But that reduces 
the time the detector spends in the right-hand block. The machine spends more and more of 
its time in the middle block-the "Everything's all right" block. This is where it lives when 
the loop is locked. You will see this on the 4046, when you watch an LED driven by a 4046 
pin that means "The output is 3-stated." That is equivalent to "I don't see much phase 
difference," or simply, "The loop is locked." 

Here is the simple circuit that behaves this way: 
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Figure N17.22: 4046 phase detector: just two /lip-/lops; the winner of the race turns on 'its' 
output transistor till both inputs go high 

Applications 

The PLL lets you generate a signal that is a precise multiple of an input frequency. That 
you will do in the lab: 

~N \.j Low PdsS v2 
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Figure N17.23: Frequency multiplier block diagram 

This trick is useful for canceling line noise by averaging (as in integrating A/0/s), or for 
generating video clocks that eliminate line noise from the display. You will use this circuit 
in Lab 21, where we need a clock that is a multiple of the sampling rate (16 X). We want to 



N17 -14 Class 17: Analog<-> Digital; Phase-Locked Loop 419 

be able to vary the sampling rate, so we use the PLL to gives us this multiple. We will use 
this multiple to set f3dB of a low-pass filter controlled by its clock rate. Here's the scheme: 
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Figure N17.24: How we will use the PLL in Lab 21: low-pass adjusts automatically to knock out frequencies we cannot handle, 
as sampling rate varies 

The PLL also can demodulate an FM signal: just watch the input to the VCO (which is 
the filtered error signal, describing variations in input frequency). 
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Figure N17.25: PLL demodulating an FM signal 

PLL stability: designing the low-pass filter 

The PLL is vulnerable to oscillations because of an implicit 90° shift within the loop; an 
'integration' performed by the VCO; a simple low-pass filter could impose a total shift of 
180° at some frequency, and such a shift could produce oscillations-an endless, restless 
hunting for lock. This is essentially the same as the hazard you recall from our earlier 
discussions of op amp stability and compensation. The second resistor in the low-pass is 
designed to eliminate this hazard by pushing the low-pass phase shift toward zero as 
frequency rises: 
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Figure N17.26: "Lead-lag" RC filter: phase shift is limited; goes toward zero at high frequencies 



420 Class 17: Analog<-> Digital; Phase-Locked Loop N17 -15 

The point that the VCO imposes an integration is hard to get a grip on. Here's a longer 
paraphrase of the Text's informal argument: 

Text sec. 9.29, 
p.647 

Imagine that the loop is locked; phase-difference signal out of the phase 
detector is zero (this works for the kind of phase detector you see in the lab); 
VCO runs where it should, at a constant frequency equal tohn· 

Now apply a ~ V to the VCO input. In response to this step of voltage, the 
VCO moves to a new frequency. Imagine that it is only a little different 
from what it was. The replica signal-the VCO output-now runs slightly 
faster; it begins to slide past the input signal: the phase difference increases 
linearly with time. Hence the proposition that the VCO integrates with 
respect to time (recall the op amp integrator, if you have trouble at this point: 
remember, its output ramps for a step in?). QED, more or less. 

And here's a diagram to say this in summary form. Notice that the variable is treated as 
phase; that's easier to handle than frequency (its time-derivative). It's hard to follow it 
around the loop because sometimes it rides disguised as a voltage proportional to phase (to 
phase-difference, more exactly); it does that at the input to the VCO. 

Text sec. 9.29, 
p.647,fig. 9.72 
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Figure N17.27: Trying to keep track of what goes around the loop: difficult! 
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Reading: 9.04 -end. 

Specific Advice: 

• 9.03: interfacing between families: {TTL levels 
(includes NMOS)} <-> { 5-volt CMOS} is the issue 
important to us. 

• 9.08: driving external loads: you should learn how to 
drive a) a load 'returned to' a voltage higher than 5 
volts, and b) a high-current load. 

• 9.09: NMOS: note similarity of NMOS and TTL 
output levels. 

• 9.10: opto-electronics: only scan this encyclopedic 
discussion 

• 9.11: noise: this is important; make sure you 
understand why 'bypass' capacitors are necessary 

• 9.12-9.14: driving buses and cables: same advice as 
for optoelectronics section. 

• 9.15-9.26: A<->D conversion: this is the core of the 
chapter, for our purposes. Some of this material is 
chatty, aimed at someone shopping for a converter 
(e.g., 9.22); other parts you should read closely (e.g., 
9.15). We think you'll recognize the difference, here. 
The most important AID conversion method, for our 
purposes, is the binary-search or 'successive
approximation' (pp. 622-24), and this is the method 
you will apply in Lab 17. Read quickly through text 
pages~ other methods forD/A, AID conversion. 

• 9.27 to end: concentrate on phase-locked loop; make 
sure you understand the scheme, and some of the 
applications. Note the issue of stability discussed in 
9.29, but we don't expect you to digest all this until 
the moment comes when you actually need to design 
the low-pass filter for the loop. The scheme is 
fundamentally simple, apart from design of the filter. 

• Only scan (and enjoy) 9.32 (pseudo-random noise 
generators) to end. 

Problems: embedded problems. 

421 

This lab presents two devices, both partially digital, that have in common the use of 
feedback to generate an output related in a useful way to an input signal. The first circuit, 
an AID converter, uses feedback to generate the digital equivalent to an analog input 
voltage. The second circuit, a phase-locked loop, uses feedback to generate a signal 
matched infrequency to the input signal-or to some multiple of that frequency. 
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A. Analog to Digital Converter 

The AID conversion method used in this lab, "successive approximation", or "binary 
search", is probably the most widely used. It provides a good compromise between speed 
and low cost. It substitutes some cleverness for the "brute force" (that is, large amounts of 
analog circuitry) used in the fastest method, "flash" or parallel conversion. 

Note that the converter you will build today with four chips normally would be fabricated 
on a single chip. We build it up, using an essentially obsolete "successive-approximation 
register" (SAR), so that you will be able to watch the conversion process. In an integrated 
converter the approximation process is harder to observe because the successive analog 
"estimates" are not brought out to any pin. We also omit, for simplicity, the sample-and-
hold that normally is included. JUlJ1.. 
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Figure L17.1: Successive-approximation a/d converter: block diagram 

17-1 D/ A Converter 
The process of converting digital to analog is easier and less interesting than converting 

in the other direction. In the successive-approximation AID, as in any closed-loop AID 
method, aD/A is necessary to complete the feedback loop: it provides the analog translation 
of the digital "estimate," allowing correction and improvement of that digital estimate. As a 
first step in construction of the AID we will wire up a D/ A. 

L..--------------..1 

Figure L17.2: AD558 D/A 

This D/A, the Analog 
Devices AD558, integrates 
on one chip not only the 
D/A, but also an output 
amplifier and an input latch. 
The latch is of the 
"transparent" rather than 
edge-triggered type, and we 
will ignore it in this lab, 
holding the latch in its 
transparent mode throughout. 
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Checkout: 
Confirm that the 558 is working, by controlling its two MSBs and its LSB with a DIP 

switch or simply with wires plugged into ground or +5. Hold the other five input lines low. 
(You may find a ribbon cable convenient; you will need to feed all 8 lines in a few minutes, 
in any case.) 

Note the relation between switch settings and Vout· Full-scale Vout range should be about 
0 to 3.8 v. What "weight" (in output voltage swing) should D7 carry? D6? 

Note the weight of the LSB. Here, if you look at the output with a scope you are likely to 
find noise of an amplitude comparable to that of the signal. If the noise is at a very high 
frequency, however, it may be quite harmless. How does your DVM appear to treat this 
noise? How do you expect the comparator to treat it when you insert the D/A into the AID 
loop? 

Digital In: 
D7 
0 

0 
1 

1 
0 

0 
0 

Do vout 

06=n _j (LSB weight) 

0 --'------ (MSB weight) 
Figure L17.3: D/A Checkout: voltage weights for particular input bits 

17-2 AID: Watching the Conversion Process 
When you are satisfied that the D/A is working, add the rest of the S-A 

converter circuit: comparator and SAR: 

In 

Figure L17.4: Successive-approximation a/d converter: slow-motion checkout: layout 
Connect the 8 D/ A inputs to the 8 breadboard LEDs, so that you can watch the estimating 
process. 
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17-2.1 Slow Motion Checkout 
Use a debounced switch for Clock and another switch (which may bounce) for 

Start* (S*). Watch Conversion Complete* (CC*) on an LED. 

L17- 4 

You will have to wire up this 9th LED, with a current-limiting resistor. To choose 
the resistor value, consider the following points: an LS-TTL output can sink 8 rnA, 
sufficient to light an ordinary LED dimly; 2 rnA is enough for a high-efficiency 
LED; the LED drops about 2 volts when lit. 

Note: The behavior of S* may strike you as odd: 

First, the SARis "fully synchronous": asserting S* by itself has no effect. The 
SAR ignores S* unless you clock the SAR while asserting S*. 
Second, "Start*" is poorly named. It should be called something like "Initialize*", 
because conversion will not proceed beyond the initial guess until you releaseS*. 

Ground the analog input, 1 and walk the device through a conversion cycle in slow motion. 
Watch the digital estimates on the 8 LEDs, and the analog equivalents, the "analog 
estimates" on DVM. 

As you clock slowly through a conversion cycle, the D/A output (showing the analog 
equivalent of the SAR's digital estimates) should home in on the correct answer, 0 volts. 
Do you recognize the binary search pattern in these successive estimates? Isn't the digital 
pattern that generates these estimates pleasantly simple? If you get a digital OJ rather than 
00, make sure that you have grounded the input close to the converter; then look closely at 
ground and +5 lines, watching for noise. 

17-2.2 Operation at Normal Speed 
Now make three changes: 

1. Connect "Conversion Complete*" (CC*) to "Start*" (S*). This lets the converter tell 
itself to start a new conversion cycle as soon as it finishes carrying out a conversion. 
(Disconnect the pushbutton that was driving S*, of course.) 

C.L..t< 

Figure L17.5: CC* wired to drive start*: sar starts self 

2. Feed the converter from a pot (2.5k or less: (Why?)), rather than from ground: 

1k ... 1
5

4-----V·:'·.·---L~~-~·,:-.r.,.----··: 
372. ·+·· 

r"~- ~ 

. ' 
' 

Figure L17.6: Variable OC analog input 

3. Clock the converter with a TIL-output oscillator, rather than with the pushbutton. (The 
oscillator built into your breadboard is convenient.) Let fc1ock = 100kHz. 

1. Note that the "analog input" is not the non-inverting terminal of the comparator, but one end of the lOk resistor; that resistor 
is necessary to maintain hysteresis. 
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Watch the D/A output and AID input on the scope. (If you want a rock-steady picture, 
trigger the scope on CC*.) Vary the pot setting (analog input voltage), and confirm that the 
converter homes in on the input value. 

17-2.3 Displaying Full Search "Tree" 
You have watched the converter put together its best estimate, homing on the input value. 

If you feed the converter all possible input values, you can get a pleasing display that shows 
the converter trying out every branch of its estimate "tree." 

JlSL 

4v -~ ~''''"'-+_, 
Ov

::::1ooHz 

DAC. 

+o 'sccpe. 

Figure L17.7: Displaying binary search "tree" 
Feed the converter an analog input signal from a second function generator: a triangle 

wave spanning the converter's full input range (0 to about 4 v). Let fanalog signal be about 100 
Hz. Trigger the scope on CC*. 

If necessary, tinker with the frequency and amplitude of the input waveform, until you 
achieve a display of the entire binary search tree. This can be a lovely display (you may 
even notice the "quaking aspen" effect); you are privileged to see the binary search in such 
vivid form--while it remains to most other people only an abstraction of computer science. 
(The search tree produced by a group of students a few years ago appears as fig. 9.52 on p. 
623, sec. 9.20.) 

17-2.4 Speed Limit 
The A/D completes an 8-bit conversion in nine clock cycles. Evidently, the faster you 

can clock it, the faster it can convert. The faster it can convert, the higher the frequency of 
the input waveform that you can capture (you need a shade more than two samples per 
period, in theory; in practice you may want to take 3 to 5 samples). 

How fast can you clock your converter? Here's what must happen between clock edges: 

c.loc.k 

SAR 'DAC. C.O"'f· 
P.r''t' s~Hie. de. Ia') 
ael ~ 

40ns 1000ns 7oons 1bnS 
rn;~:x rn<l:X """" rYll.l< 

Figure L17.8: ND speed limit: what must be accomplished within one clock period 
These numbers suggest a maximum clock frequency of a little less than 600kHz. 

Feed the converter a DC level and gradually crank up the clock rate as you watch the 
analog estimates on the scope. This time, use the external function generator as clock 
source (the breadboard's top frequency, 100kHz, is too low). At some clock frequency you 
will recognize breakdown: the final estimate will change, because the clock period will no 



426 Lab 17: Analog<-> Digital; Phase-locked Loop L17-6 

longer be allowing time for all levels to settle. Chances are, this will happen at a frequency 
well above the worst-case value of 600kHz (above 1MHz, in most cases we have seen.) 

17-3 Completing the AID: Latching the Digital Output 

Up to this point we have been looking at the converter's feedback D/A output. Do not let 
our attention to this analog signal distract you from the perhaps-obvious fact that the 
feedback-D/A output is not the converter's output. We use an AID in order to get a digital 
output, of course, and on a practical IC AID, as we observed at the start of these lab notes, 
the analog estimate is not even brought out to any pin. 

We now return our attention to the normal subject of interest: the A/D's digital output. 

Output Register 

An IC AID normally includes a register to save its output (and incidentally, in the age of 
microcomputers, such a register routinely includes 3-state outputs, for easy connection to a 
computer's data bus). 

Now we will add an 8-bit register of D flip-flops to complete the A/D. We need to 
provide a clock pulse, properly timed, that will catch the converter's best estimate and hold 
it till the next one is ready. Timing concerns make this task more delicate than it looks at 
first glance. 

CC* ("Conversion Complete*") certainly sounds like the right signal. It turns out that it 
is not-not quite. The trailing edge (rise) of CC* comes too late; but the other edge (which, 
inverted, could provide a rising edge) comes too early. 

At the beginning (fall) of CC*, the SARis putting out its initial estimate for the LSB; it 
has not yet corrected it (set it high), if such correction is necessary. Thus you would lose 
the LSB data, getting a cor:stant Low, if you somehow used the start of CC* to latch the 
output. 

At the end (rise) of CC*, the SAR is already presenting the first guess of its next cycle 
(0111 1111).2 

too earl~ too la+e 

Figure L17.9: CC* timing 

What we need is a pulse that ends well away from both edges of CC*: 

c.loc.k 

pv\se needed 

Figure L17.10: Output register clock needed 

A single gate can do the job. 

Add this gate and feed its output to the clock of the output register (74HC574). Let the 
register's outputs drive the breadboard's eight LEDs. 

2. Why? Because the rise of CC* and the initial guess both come in response to the SAR clock, and CC* happens to come up a 
little later (see 74LS502 data sheet: tPLH is slower than tpHL· How's that for fine print?) 
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r------, 
- --<

1 
~our 
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L----- ..J 

+a LE"'D's 

Figure L17.11: Output register added to s-a a/d converter (output-register clocking left open for your addition) 

Watch the converter's digital output and confirm that it follows the analog input applied 
from the potentiometer. It may be indecisive, by 1 bit. Is this indecision avoidable? 

17-4 Phase-Locked Loop: Frequency Multiplier 

Note: you should build the PLL on your private breadboard--either the 
micro board or the single strip holding the amplifier you built back in Lab 
10. 

You will have a chance to apply this PLL, if you like, in Lab 21. There we need to 
generate a multiple of the frequency at which the computer samples a waveform (16 x the 
sampling rate); we will use that multiple to regulateiJdB of a low-pass filter. This 
adjustable filter is of the switched-capacitor type, like the one you built in Lab 12. 

Thus we will make the filter follow our sampling rate (so as to clear away the spurious 
high-frequency elements in the D/A's steppy output waveform). This future application for 
the PLL explains some elements of its design: particularly, its very wide capture- and lock
range. We will first apply the loop, however, as if we were using it to generate a multiple of 
the line frequency, 60Hz. This is the example discussed in detail in the Text (sec. 9.29), 
and the circuit below is the one designed in the Text discussion, except that we have altered 
the VCO component values to permit a widet; range of operation. 

"lock ?' 

h ~ 
't70pf - (n.!J.,one ''fO'i6 

p as l.lk +5 "7 c-;,hfat'n; bofh 
r" Is 1 k , , 

r------- r"'~--:"-;---;';'-'--:-"f"''""' jlha>e· detedor 
f;~ lk C.lo.. Vu__ and I/ co) 

~S ...Jl_[ -JYVv--'1'1~ ~~9 phase t:.Jpe1. 2 -=-
detedor- ~.31'1, '!.1M 

uipv!: S13nal 3 cor>1p 111( 4046 t-.peJI n 9 v1n ~ IK4o4~ 
ll\USt not 1n 2 J 

~~c~~D +5 '------,-------, :J 1\, ~"" ~' 
: ~(change to 10K 

{or Ia ~t sta3e} 

vco 

R 
11 

Flgure L17.12: Phase locked loop frequency multiplier circuit 
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Construct the circuit shown in the figure above. The phase detector and VCO are drawn 
as separate blocks, above; but note that they are within one 4046 chip: you do not need two 
4046s. 

Generating a multiple of line frequency: (Type II detector) 

Take the replica signal from Q10 of the 4040 (pin 14). Set the function generator, which 
drives the input, to around 60Hz. Use the scope to compare this input signal with the 
synthesized replica. Confirm that the PLL locks onto the input frequency within a few 
seconds. Are the two waveforms in phase? The lock LED should light when the loop is 
locked (a logic high at pin 1 indicates that the phase detector output is 3-stated: that is, the 
detector is content, seeing little reason to correct the replica frequency). 

See if the replica follows the input as you change frequency slowly; then try teasing the 
PLL by changing frequency abruptly. You should be able to see a brief hunting process 
before the loop locks again. If you replace the filter's 330k resistor with 33k, you should 
find that the loop hunts longer: you have reduced the damping. When you have seen this 
effect, restore the 330k; it makes the circuit work better, on the whole. 

What frequency should be present at the VCO output when the loop is locked? Check 
your prediction by looking with the scope at that point (pin 4 of the 4046). Why is this 
waveform jittery? 

Now look at the output of the phase detector (pin 13 of the 4046). This is the type II 
detector described inCh. 9 (sec. 9.27, pp. 644-45). You'll notice a string of brief positive 
going pulses, each decaying away exponentially when the detector reverts to its 3-stated 
condition (you may also see smaller negative-going pulses, to the extent that the circuit is 
troubled by noise). 

Theory predicts that these correction pulses should vanish in the steady state. But the 10 
megohm load of the scope probe you are using is discharging the filter capacitor enough to 
make the pulses. Interpose a 411 op amp follower between the capacitor and the probe and 
the positive pulses should all but vanish. They never go away entirely, because the time
difference between the rising edges of the original and replica signals does not go quite to 
zero, and the correction pulses have a minimum duration of a few microseconds. These 
pulses look insignificant when you are watching the loop locked to 60 Hz; they make the 
phase detector look nervous when it is locked to a higher frequency. 

Type I Detector (exclusive-OR) 

The 74HC4046 includes three phase detectors. The Text describes two of them, in sec. 
9.27, pp. 644-45 (types I and II); the third detector on the HC4046, Type Ill, is simply a 
variation on the SR latch, with S and R driven by positive-going edges on the input and 
replica lines, respectively. We will ignore the Type III detector: two detectors seem plenty 
to consider on a first encounter with a PLL. But feel free to check out the Type III, if you 
like: its output appears at pin 15. 

The Type I detector output is at pin 2, and the inputs are the same as for the type II 
detector; to use the Type I, simply move the wire from pin 13 to pin 2 (and then to 15 for 
the Type III, if you must!). For both Type I and Type III you should be able to see the 
fluctuation of the VCO frequency over the period of the input, which you can exaggerate by 
reducing the size of the lf..lF loop filter capacitor. 

If you make a sudden, large change in the input frequency, you should be able to fool the 
circuit into locking onto a harmonic of the input frequency (a multiple of the input 
frequency). For our purpose in Lab 21, such an error would make the circuit useless, so we 
will use the Type II detector. You are likely to make the same choice in most applications. 
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Note also the phase difference that persists between input and feedback signal in the 
locked state. These simple phase detectors require such a phase difference; this difference 
generates the signal that drives the VCO. If the phase difference ever goes to zero (or to n), 
the loop loses feedback: it can no longer correct frequency in both senses, as required. The 
Type II detector is altogether classier: it requires no errors to keep the loop locked, for it is 
able to use the capacitor as a sample-and-hold rather than as a conventional filter, when 
locked. 

When you have finished looking at the behavior (and misbehavior) of the Type I detector, 
revert to the earlier circuit, using the Type II (output at pin 13). 

Expanded Lock Range: x 32 rather than x 1 k 

Now let's set up the PLL as you will want to find it the next time you use it, in Lab 21: 
change the tap on the 4040 from Q10 to Q5 (pin 3). Change R0 from 330k to 10k (our 
motive is to maintain stability, by holding the "loop gain" constant: the counter no longer 
divides by so much as before (33X less), so this resistive divider must attenuate more (33X 
more). Now you are generating a modest 32 x fin at the VCO output. 

Over what range of input frequencies does the PLL now remain locked? The range 
should be wide; we need this range in order to make the sampling scheme of Lab 21 
flexible. The 4046 is capable of capture and lock over a huge range: better than 1000:1. We 
will be content with a range between about 200Hz and 20 kHz. Capture and lock range are 
the same for the Type II detector; for the less clever detectors, lock range (the range over 
which the loop will hang on once it has locked) is larger than capture range (the range over 
which the loop will be able to achieve lock). This ability of the Type II follows from its 
immunity to harmonics: you can't fool the Type II. 
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Jargon & Terms 

ADC 

aliasing 

binary search 

capture range 

DAC 

dual slope converter 

flash AID 

lock 

lock range 

Nyquist theorem 

SAR 

Ch. 9: Jargon & Terms; Review 

NO: analog-to-digital converter 

production, by a sampled-data circuit or system, of a spurious output 
caused by sampling at an insufficient rate (see Nyquist Theorem, below) 
a search strategy in which one begins at the midpoint of the range not yet 
ruled out; as information about the correct answer arises, the next guess 
is always the midpoint of range in which the answer may lie. 

of a phase-locked loop: the range of input frequencies over which the 
circuit can 'lock' to an input (see lock, below, and see sees. 9.27, 9.30). 

D/ A: digital-to-analog converter 

AID of integrating type, slow but capable of canceling periodic noise 

parallel AID converter: fastest of converters, using n-1 analog 
comparators in parallel, to convert to ln2n bits. 
of phase-locked loop: condition in which the replica signal is held in a 
fixed phase-relation to the input (see sec. 9.27). 

of a phase-locked loop: the range of input frequencies over which the 
circuit can retain lock, once locked. For some phase detector types this 
range is larger than the capture range. 
observes that at least two samples (we prefer to say 'more than two 
samples') must be taken within each period of an input sine wave in 
order to gather enough information to characterize the waveform fully. 
If the input waveform is not a sinusoid, then apply the requirement to the 
highest-frequency component of the waveform. 

successive approximation register: the estimating block of a binary 
search or successive-approximation AID converter 

Ch. 9: Review: Important Topics 

1. Hardware gate properties. 

a. Inputs: TTL versus CMOS: impedance; what floated inputs do 

b. Outputs: TTL versus CMOS; 3-state; open-collector (rare, except in 
comparators, where it is standard) 

2. A <-> D conversion 
specifications: 

a. resolution: #of bits 

b. analog frequency limit: need > 2 samples/period of highest (Nyquist) 

3. Phase-locked loop 
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CHAPTERS 10 & 11 

Cbs. 10, 11: Microcomputers and Microprocessors: Overview 

As we reach computers we reach a subject that in one sense is familiar to most students; 
practically everyone, these days, has done some programming, and some of you no doubt 
are sophisticated in the subject. But in another sense computers as we view them in this 
course may be new even to an experienced programmer. We take a worm's-level view of 
the machines, concentrating on hardware, and thinking about hardware even when we do 
program. So, these chapters on microcomputers should confirm the digital hardware 
learning that you have been engaged in since Lab 13. 

The computer that you build in this series of labs will be capable of running fancy 
programs-but you will not have time to write anything fancy for it. Our interest will stay 
with the intimate relation between program and hardware. You will see things happen in 
response to every few lines of code that you write. You will see, in gritty detail, what 
happens if you write faulty code; you will see what interesting misbehavior results if your 
hardware is even a "bit" wrong-if a high-impedance input is left floating, for example, or 
if a couple of data lines are interchanged. 

We hope-as we said back at the start of these notes-that putting together this little 
machine and then setting it to work will render vivid and concrete notions that otherwise 
might remain abstract: bus, bus contention, processor speed limitations, subroutine call, 
interrupt, for example. You will work hard for these rewards. You may sometimes wish 
you had a ready-made computer to work with-so that you could simply hang peripherals 
onto it. Students have told us repeatedly, however, that they did not favor such an 
approach. They have told us-looking back-that they found the labor worthwhile; that 
they would have been sorry to miss the sense of accomplishment and close acquaintance 
with the machine that comes from struggling up from the chip level, and then teaching the 
machine every line of code that it knows. We hope you will feel a similar sense of 
satisfaction, and of ownership. This is the part of the course when students begin to ask for 
extra time in the lab, and begin to show their circuits to friends-and by the end there is 
usually someone who feels sentimentally obliged to take a photograph of his little machine 
before saying goodbye to it. ('Saying goodbye' is a euphemism, actually, for 'taking to 
pieces;' a melancholy event a little like Hal's gradual lobotomizing in the movie 2001. 

Chapter 11 speaks of the processor that you will use in the lab (the 68008), and in that 
sense is the more relevant of the two chapters. But it is Chapter 10 that introduces concepts 
(buses, interrupts, and even assembly-language, though the language happens to differ from 
the one your processor understands). Chapter 11 concentrates on a no-holds-barred, 
sophisticated application for the 68008 processor. That signal averager is not a circuit or 
program you will want to grapple with in your first days of assembly-language 
programming. Save it for the time when you have begun to get the notions firmly in place 
and are ready to appreciate some sneaky designs (like the ROM that appears on power-up, 
and then disappears) and some programming tricks as well. 

To help you get used to assembly-language you will probably prefer the simplest 
programs available. The first of these appear in some of the early exercises of Chapters 10 
and 11 (though some among these early problems require either cleverness or experience); 
another set of simple programs appear in the lab programs: Lab 19's listings, and in the 
worked example called 'Ten Tiny Programs.' These lab programs are worth studying not 
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because they are ingenious, but just because they are not. They are simple, and you will get 
a chance to run them, watching in detail how they behave. 

The last lab invites you to do something satisfying with the machine that you have 
worked hard to build. In our course, we treat this invitation as just that-not a requirement 
but an opportunity for enthusiasts. The last lab, Lab 23, may appear to be scheduled for a 
single day, but it need not be so arranged, and should be allowed extra time if some students 
are ready to dig into a project. 

A good project can serve at least a couple of important purposes: it can let you solidify 
your understanding of programming (not our primary concern), and of the relation between 
your programs and the hardware on which they run (that relation is one of our central 
concerns in this part of the course). If the project includes some analog elements, or at least 
some use of AID or D/ A, even better: in that case it may serve to draw together some of the 
themes of the entire course, providing a 'review' to put it one way; providing coherence, to 
put it a little more grandly. 

In any event we hope you emerge from your labor with the microcomputer feeling that 
the microprocessor is neither mysterious nor daunting, but just another device in your bag of 
tricks-and one that gives very impressive results for a modest expenditure of your effort. 
It's pretty much true that when you've seen one processor you've seen them all, so you can 
expect these labs to prepare you for the use of processors in general. We hope that once you 
have understood your own small machine you will enjoy a new feeling of power. 



433 

Class 18: J..Ll: IBM PC and our lab micro 

Topics: 

• computers generally versus our little machine: what's missing, what's extra 

• turning a microprocessor into a microcomputer or controller; or adding peripherals 
to a working computer: hardware: 
how the processor tells the world what it wants to do: its control signals 
two cases: 

IBM PC bus signals 

68008 processor signals 

• a minimal 68008 computer/controller is very simple: 
simpler than what you will build 

• ... but details of a particular implementation can be subtle: 
two examples from our lab machine: 

a timing problem resolved: fixing bus grant* 

taking advantage of dtack* to provide a single-step function 

A. Computers generally versus our lab micro 
Our lab microcomputer includes many elements common to all standard computers. It 

also includes some quirky peculiarities. We hope that you will come to tell which elements 
fit into each category, because we aim to teach you about computers generally, even as we 
ask you to wire this sometimes-odd machine. 

Any old computer 

Text sec. 10.01, fig. 10.1 C-,-,--,-,---,----.--,-
3 us 

Figure N18.1: General computer block diagram 

Our lab computer 
~---

Figure N18.2: Lab microcomputer 

You can see what's missing from our machine, and what's extra. 
In grittiest detail your lab computer may look dismaying (see the full schematic that 

appears after Lab 23). It's not hard, though, taken a section at a time, and as you build the 



434 Class 18: j.11: IDM PC and our lab micro N18-2 

machine we will ask you to wire just one small subsection, and then test that. It's also 
comforting to recall that already you have wired more than half of the full circuit. 

B. Control Signals: how a processor says what it's doing 

The processor (CPU) determines what happens in the computer, and when. A designer 
need only combine these signals appropriately to make things happen as the processor 
expects. 

Any processor 

Any processor needs to announce, through its output signals, at least the following 
information: 

Timing: one or more signals says when other signals are valid and may be 
acted upon. If a separate line, often called "strobe." 

Direction of transfer: toward the CPU or away. Always called Read/Write. Note CPU
centric convention: "Read," e.g., is a transfer of data into the CPU. 

Category: Memory vs 110: 
Some processors use a signal so-called; others do not, and instead 
allow one to use address lines to make this distinction (see below). 

Which device/location within a category: 
The lines that say this are called "address." 

Particular processors/computers 
Text sec.10.13, 11.4 

Here are the two examples important to us: 

• the IBM PC, which you may well want to hook something to, and which is 
discussed in some detail in Chapter 1 0; 

• the 68008, a good processor (sibling of the 680xx processors used in the Macintosh 
computers, for example), and the processor you will use in your lab computer1. 

1. This comparison--<:omputer versus microprocessor-is a bit of an apples-versus-oranges operation, or at least tangerines 
versus oranges. For, some signals on the PC bus are not bare processor signals, but instead are formed by logic that combines 
CPU signals much as our small logic clusters will put together 68008 signals in our linle computer. For example, the Intel 
processors within the IBM PC use an (I/0)/M* signal (other Intel processors use 1/0*/M!), but that line-so similar to the 
simplest scheme for use with a Motorola processor, in which a single address line is assigned exactly this task--does not 
come out to the IBM PC bus. 
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Timing: 

Direction: 

Category: 

1/0 

Memory 

Which location: 
(within a category) 

ffiMPC 

Included in signals 
defining category 
& direction 

Included: 
e.g., lOR*, lOW* 

lOR* 
lOW* 

MEMR* 
MEMW* 

20 address lines 
10 address lines 
on I/0 operations 

68008 

data strobe* (DS*) 

(R!W*) 

one or more 
address lines; 
designer's choice 

20 address lines (it is easy 
but not necessary to 
dedicate one address line 
to distinguishing I/0 vs 
memory) 

Figure Nl8.3: Control signals used by IBM PC bus versus 68008 processor: similar 

Examples: hooking up peripherals to a microcomputer 

We will start by trying a simple decoding task with gates-putting together address and 
control signals to determine when to tum on memory and when to tum on a single output 
port. Then we will look at two fuller examples, one for an IDM PC and one for a 68008. 
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Warmup: decoding control signals for a minimal68008 controller 

Encouraging thought: we don't need to worry about every CPU pin 

The 68008 has a lot more pins than any other chip you have met in this course. We can 
make this thicket of pins less intimidating, however, if we group the pins by category: 

vee: 
GNl> 

Ct.K 

FC2 

£ 
ill 

iEii:P. 
RTfET 

H7iTT 

ADDRESS BUS 

YUS Al>lJRESS BUS 

IJATA YUS 

6 8008 SI/1PL/F/Eli 

Figure N18.4: 68008 pins, grouped by function 

We make things simpler still in our lab computer by ignoring many of these lines; in a 
minimal computer we could ignore still more, and the shrunken processor sketched on the 
right, above, is meant to show how simple things begin to look. You will find such a 
bare bones machine described in a Worked Example. 

A simple example 

Just to make sure you get the idea, try putting together a memory enable and an I/0 
enable. Assume that address line A15 defines the boundary between memory and I/0 space. 
We want to generate two signals: MemEnable* and Out*. Yes, it's as straightforward as it 
appears: 

Figure N18.5: Putting together a few 68008 control signals 
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Two fuller examples: IBM & 68008 

Here are two examples from the Text They show ports defined for an IBM PC and then 
a 68008. 

Text sec.10.13 

Input Port: IBM PC 

First, an input port for the IBM PC. This uses complete address decoding (that is, it looks 
at all/ 0 address lines that the PC uses for VO. 

Text sec. 10.07, p. 689, 
figs. 10.9, 10.10 

'679 

Q? 
I 6 7 /.f. 

])(J D7 

Jg 
L da+a biJ.s 

::: ~:~·.::;:?.-.-·.;~·::.::. _-_-_ 

AM 
(!61 

__ .._I :Xv•l<'d d&tac ><=:" 
I ... -lhere~re 

----{ ~ clock 
:-,~here. 
);:_note that rlat1 ,s- r:--

!291. rea<ilj (not vdf!d J 

wA en fOj;j (a.lfs 
(~-vhueH on 6110011 t't : 
is vatr'd 6e{ore 'J5S {afts)-; 

Figure N18.6: IBM PC output port, and 1/0 timing 

AEN is a signal asserted only during the very exceptional case of a DMA (direct memory 
access) operation; you can think of it as equivalent to a Normal* signal (low==> normal, 
note). Your lab computer uses a very similar signal to condition the enabling of both 
memory and VO devices: it requires that two signals called "function codes," fc1 and fc0, 

shall not both be high; that 11 would mark another exceptional event-as exceptional2 as 
DMA for the PC-an interrupt acknowledge; we won't discuss interrupts until we reach 
Lab 22.) 

The '679 is a comparator--of an especially clever design: it looks at 12lines; it compares 
them to 12 reference lines. That much is standard in a digital comparator. The nice trick 
here is the saving of pins: instead of using 12 lines to define the reference value, the '679 
uses just 4 pins (labeled P3-PO) to encode that value: these four lines determine how many 
of the 12 reference values are zero. For example, 

P3- P0 A1 A2 ••• Au 
0000 1 11 ... 1 
0001 011. .. 1 

0010 001. .. 1 

Neat? 

2. We're speaking relatively: there may be many interrupts per second, but there are few relative to the number of instructions 
executed. 
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Input, Output: 68008 

Here is a similar circuit, vaguer concerning address decoding. The logic block takes in 
all 20 address lines, but in a small computer you would not look at all 20 address lines in 
order to decide whether or not to tum on this device. What is gained, what lost by looking 
at fewer than all address lines? 

'/iVT7ii N 0 T /IV r/f 
iJSS~rted: ~ 
~it's !n 

ord/nar'1 
op er a.ft'o~ 

Driving dtack* 
Text sec.11.4,11.05,p. 764 

AO-A/9 

dtack 

Not!: CPIJ, n111t ptr/pheral 
decitles whe .. 
to drive bus 

Figure N18.7: In, Out ports: 68008 

In the circuit above, the 3-state driving the signal called "dtack*" requires some 
explanation. Dtack* can be treated more crudely. In today's lab we simply tie dtack* low, 
most of the time; we do that to keep things simple. The scheme shown above asserts dtack* 
when this peripheral detects its address. That assertion of dtack* tells the processor "go 
ahead; everything is all right; the transaction worked" ("dtack" = "data transfer 
acknowledge"). A design like this one requires that every peripheral or memory attached to 
the computer also drive dtack* when addressed; it also requires additional hardware that 
will keep the machine from getting hung up if dtack* does not come back. The Text 
describes such a "timeout" arrangement in its full controller design (see text reference 
above). 
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And here is how the 68008's timing looks on a read o~ write (either I/0 or memory): 
1 2. 3 lf- I 

CU( 

R/w 

rne an~ 
1) loi; of {/.e; 1 and 

Z) either (eue)! 
perm if ted 

{ 

M71'1f.,.,CI'U,ona_tAk/te } ... /(A tU!I.lTF 

~Am --,L---------------~ (3) 1 ).,,(ai?E!Jfl 

(? me.a.n5 1/10T driven: 

(e.ue { not de. term /1//eJ 

( 3- stated /;us)) 

~ liAlll must 6-e jJreseni:er/ 
fu C /l U ?;I/ this firn( 

(ff·"·s <'s CPU's da{(l 

setu.;> time) 

Figure N18.8: 68008 Read and Write timing 
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These I/0 port examples are instructive but not usual in their reliance on gates. An 
address decoder is more efficient, and in Lab 19 you will meet such a chip and apply it in 
precisely this setting: as I/0 decoder, defining ports. 

d. Some details of the lab computer 

Here are a couple of circuit fragments hard to understand at first glance. They illustrate 
the meeting of general and quirky features in the computer. 

In one sense these features are extremely quirky; you will not see them again. But they 
can also be likened to two computer operations of greater generality: 

the bg*/busgive* logic is necessary for DMA, a technique used widely for fast data 
transfers, like those between a disk drive and computer memory; 

the dtack* blocker mimics what a slow peripheral would do, to give itself time to 
respond to the quick CPU. 

In both cases what is odd is that we, the humans, are in the role of peripheral, and we 
operate in ultra-slow motion; we are the ultimate in sluggish peripherals. 

Fixing Busgrant* 

Ao. rdw are 

ihis s t'jn a/ waits 
li.htl/ e>Jd o( 
c0c!e 1 .•• marked 

cpu ~leases 
bu~s 

Figure N18.9: Fixing busgrant*: the properly-timed busgive* just awaits the end of the cycle, marked by the end of ds* 
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The problem this circuit aims to solve is discussed in the lab notes: in a phrase, it is that bg* 
comes early. Not until ds* goes high can we rely on the CPU to have turned off its 3-states. 
Not until then, therefore, should any other 'bus master' turn his on. 

Single-step 

BUSREQ.UEST 
;_ary_ ~!J~adJ 
I + 

f>Soog 
R of; FF 

At>RCLK 
C'*pit"") 

I '---'---""'<.. 
\_/ 

e d~e here <en dr Fi'i(k low) d //, wi"j 
processor tv finish r;c!e ... 

® ... -fhe"' c;.. /Jr-ie( hrjA 011 ~S 
resets {fo;), ndYIJC'J1j 11/) jJYIXf'SSOr 

Figure N18.10: The second of two idiosyncratic circuit fragments from the lab computer: single-step logic 

A capsule explanation of this circuit might say, simply, that it hangs the computer up in the 
middle of every cycle, by putting dtack* high; a pushbutton lets the computer finish the 
cycle, by driving dtack* low again; but dtack* stays low only long enough to finish the 
cycle. At cycle's end (marked by the rise of ds*), dtack* goes high again, and again the 
machine is hung up. Even this "capsule" description was a bit of a mouthful. 

The value of this odd little circuit is simply that it lets us slow the processor to our 
sluggish human pace: we let it begin to do some operation, then check whether things are 
going as we expected. This form of single-step allows us to check both hardware and 
software, and you will rely on it throughout the micro labs. 
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Ch 11.: Worked Example: Minimal 68008 Controller 
Compare Text sec.11.05 
I a much more ornate 
memory enabling scheme). 

Problem: Minimal68008 controller 
Design a microcontroller (that is, an incomplete computer), using a 

68008. Give it the following characteristics: 

• ROM: 32K 
• RAM: 16K 
• I/0: one input, one output 

Ignore the function codes and all other CPU signals not shown below; 
drive dtack* as simply as possible. 
CPU Signals 

DATA(8) 
ds* 

r/w* 
dtack* 
ADDRESS (20) 

A,s A,, 

--- -- ....... -----

No need to jdte WE: 
-(j) T<::n.:~ fak<n car<- of 
~ CS lo:'/< ( ds ); 

@ r/o vs. rnernor~ 

h,mdled b'1 Cs, foo: 
T/0 wrLtCS WO• 't 
affeef RAH :f it's 
dCsabl<-d. 

./ R0/'1 enable on Re~d, 
fo pr~venf /w:s 

15 14- clash if +here is 

A, .. -A¢ A,-,-A¢ an •Hempfed 

1-~--~--;.-..... -.---.... ~-..._-----+--.... - Wnh fo ROM 

--• A,s --
........ ---_,--

1...
Als: can use 

he)tt l.<:3!.u line i! bove fl.e one 
-tl-.:~.t ROfl u.ses => RAft( s(fs just 

<lbove /?OH. B~f ft..;, •"< not reF red. 

:I./o vs. ~morj - ·n.;. is MSB af address; 
w< can't o<se Ats to disfiojv.is/. I/O from 

rnemor.-!1, as in ihe lab lnic.ro. 

Figure XCTRLR.l: Minimal68008 controller 
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The gating shown above does not take advantage of shared terms, like A19 and ds*. Here's 
another way to enable ROM and RAM: 

a. shared ietm ... 
I __ 

I /?.0/>fEJV 

I 

-- -··· b_l:!t _f4!._0_-- ->1 
1ate de!a'fs 1 

I 

1fJ...M1fN 

Figure XCTRLR.2: Shared terms sent to two gates: delay from timing signal, ds* is increased 

This sharing is not always wise: here, we have added a gate delay between ds* and the 
decoder output. In this case, however, these timing issues are not urgent. Our processor is 
quite forgiving: it allows enough time for two and probably three layers of gates within its 
timing requirements. You will find such timing issues discussed in sec. 11.05. 



Reading: 
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Chapter 10 re buses and computer 
organization generally; 

10.01, 10.05-10.08; 10.20 (i/o hardware 
example). 
Omit the other sections, which treat 
programming. 
Chapter 11.4 (bus signals, which recalls 

chapter 10's similar account of the IBM 
signals); 

postpone considering interrupts; 
11.05 re example of small 68008 computer. 
Problems: 

Embedded problems, but omit 
programming exercises. 
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Today's is another long lab. Don't get depressed if you need part of the next session to 
finish this work. But we do hope you can finish most of this work today. The principal 
reason, of course, is simply to leave yourself as much time as possible near the end of the 
term in which to enjoy putting your computer to use. A lesser reason is the circumstance 
that almost the entire reward in today's lab, for the considerable wiring task we ask you to 
do, appears at the very end of the lab: there you will see your machine run a program for the 
first time. We get a little melancholy seeing you do too much wiring without reward. 
Perhaps you do, too. 

Today you will again make use of the loadable RAM you built a few sessions ago. This 
time, you will use it in the way that a memory most often is used: to hold programs and data 
for a processor (or "CPU"). By the end of this lab your circuit will have evolved into a sort 
of fetal computer: alive~apable of running a program--but helpless, and not yet useful. 

It will be not yet useful, and not truly a computer, because its I/0 (input/output) powers 
will be so severely limited: you cannot speak to the machine while it is running a program 
(so there is no "I" at all); it can speak to you only by showing you what is on its data bus (so 
there is nearly not "/0" at all). In the next lab (Micro 2) you will begin to remedy those 
deficiencies. 

Reminders: 

1. Try to test each stage as soon as you have built it, so as to keep your de-bugging 
tasks as simple as possible. 

2. We suggest that you build from the lab notes and not from the overall circuit 
diagram: those notes let you build in stages, and also give you a fair chance of 
understanding the details of the circuitry. It would be too bad to build this circuit 
blindly, as if you were an uninformed, alienated technician. 

3. Today you will not only add to the earlier circuit; you will also replace some 
temporary connections made in Lab 15. These changes are indicated on the 
diagram below (next page). It is easy to forget, say, that the address counter's 3-
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states must no longer be enabled all the time, now that the CPU has arrived. It is 
easy but not permissible: bus give* must replace the ground connection. 

The Big Picture: 
This Lab's Changes and Additions to the Full Circuit 

Figure L18.1: Today's changes and additions: the computer evolves from RAM & counter circuit 
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Note: A full circuit schematic for the lab microcomputer appears in 
Appendix C. 
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We urge you not to wire from this big document. Students sometimes have made this 
mistake. Finding the full diagram, they began to wire from the left edge toward the right, 
more or less in the manner of a McCormick reaper. The results are poor. You find yourself 
building things that you do not understand. But the Big Picture (as we like to call this big 
picture!) helps a great deal when you are trying to find your way about in a section of the 
circuit already wired. 

18-1 Clock 
Power this integrated oscillator, and confirm that it performs as it should: 

• frequency: 8 MHz. 

1'10 
cmnectim 

Figure L18.2: 8 MHz Crystal Oscillator 

• output levels: CMOS levels: within about 0.1 v of supplies. 

• rise and fall time less than 10 ns (rise & fall defined as time between 0.8 and 2.0 
volts). 

• duty cycle: 50% is the target (that is, a waveform that is high for half its period); 
the processor will tolerate a 45% to 55% duty cycle. Treat threshold as 1.4 v. 

18-2 Installing Central Processor: Preliminary Test 
Here, you will install the processor, leaving many of its lines unconnected, and run a first 

test to see whether the processor responds properly to your request that it "grant you the 
buses:" that is, that it 3-state its own internal bus drivers. 

Before you begin to wire the CPU-with its formidable 48 pins-we urge you to 
photocopy a pinout label from the pinout section of this Manual (Appendix D, p. 612), and 
paste it onto the CPU. The label will save you much pin-counting. 
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Installing CPU 
Make the connections shown on the diagram below. Pins shown connected to nothing 

may float. Note particularly that we are not asking you to wire the address and data buses. 
Leave all those pins unconnected. 

RE"SET 
(~n kejpU) 
r----

BUSI?EQ.U~T 
;_on_ ~!j.e_aciJ 
I + I 

: '~ 
11 
I 7 

+ 
+5 

CPU 
~8008 

Figure L18.3: CPU Preliminary Wiring: Busgrant* Test (buses not yet wired); pinout label shown on right 

Test Procedure 

Check to see whether the processor will "give you the buses" in response to your request, 
using the following procedure: 

• Apply the clock signal to the chip and assert br* (pronounced "bus request bar" or 
"b r bar"). 

• A few clock cycles after you assert br* (a twinkling, at 8 MHz!) you should get 
busgrant* (bg*). Watch the bg* pin with logic probe or a breadboard LED. 

• In rare cases, your processor may refuse to "give you the bus" until you have first 
asserted and then released Reset*. So, try Reset* if you ever cannot get the bus. 

When the processor passes the busgrant* test, proceed to the next step, which is to add a 
few gates that fix the faulty timing of bg*. 
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18-3 Fixing busgrant* 

Oddly, the processor's bg* signal is not properly timed. Therefore we must build some 
logic to assure proper timing of this signal that tells us we may take control of the buses. 
(You, the human, need to be able to drive the buses, as you know, in order to load programs 
into memory, as you have done in earlier labs.) 

The 68008 puts out a signal called bg*, bus-grant*, that ought to mean that the CPU has 
three-stated the buses. It does not quite mean that, however. It means, instead, that the 
CPU soon will release the buses. The logic below delays the effective bus-grant signal, 
which we call Busgive*, until the buses surely are free. They come free at the end of the 
current cycle, marked or timed by the rise of the timing signal ds* (data strobe bar). 

Figure L18.4: busgrant* timing detail 

We suggest you use a green LED (high efficiency) to indicate busgive*, since the lighting of 
this LED means "Go ahead, use the buses." But you may, of course, use any LED color 
that pleases you. Here is a handful of gates to fix the timing of bg*. 

GB008 

Figure Ll8.5: busgrant* to busgive* Logic 

The test that earlier showed you an assertion of bg* in response to your br* (bus request) 
should now show you a lighting of your busgive* LED. 

When busgive* is working properly, wire busgive* to the OE* pins (3-state control) of 
the '469 address counters, and to Cin * of the less significant '469. The latter connection 
freezes the counter while the CPU is running programs; we will take advantage of that 
effect by using Adr-Clk while programs are running, without disturbing the address 
counters. busgive* replaces the temporary ground connection you should find at both OE* 
and Cin *. Soon busgive* will drive additional points, as well, in logic that you are about to 
build. 

Buses 
Now that busgive* is working, you should join the CPU to the address and data buses. 

The CPU drives the full 8 lines of the data bus, and drives allJ6 lines of our address bus (of 
which 13 lines go to the RAM; the remainder go only to the display, at present). We do not 
use the highest four address lines coming out of the CPU: A16 - A19 . Leave them 
unconnected. 
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18-4 Memory Enable Logic 
Until now, the RAM has been enabled continuously. The gating shown below will 

enable memory only when the CPU wants it enabled. 

--- cas before) 

Figure L18.6: Memory enable logic 

The RAM is enabled under either of two conditions: we, the humans, want to load or 
check RAM; or the CPU wants to read or write. 

• busgive: One of the enabling conditions remains approximately as before: if you 
have "requested the buses" and the CPU has granted your request by asserting 
busgive*, then the RAM will be enabled continuously, as it was in the earlier labs. 
Note that the signal used here is the complement of the more-widely used signal 
called bus give*. 

• CPU write: But when the CPU controls the buses, as it does whenever it is 
running a program, the RAM is to be enabled only during a transaction between the 
CPU and memory (a read or a write operation). The signals that define such a 
transaction are of two types-

timing: the time is right; 

categoric: it's this sort of transaction-between CPU and memory. 

One can put this more exactly: 

ds*: 
The RAM enabling is timed by this general-purpose timing signal. Ds* 
says, as we have noted, that the time is right; more specifically, it says that 
the CPU's output lines can be trusted: 

+ the address is valid; 

+ R!W* is valid; 

+ other odd signals like the"function codes," fc1 and fc0, below, are 
valid; 

+ and, during a write, ds* also means that the data bus is valid (on a 
write, the CPU drives the data bus). 
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A 15 low says that the operation is in memory address space, rather than the 
address space that will be used for I/0 devices. We'll say a few more 
words, below, about this distinction between memory and I/0 address 
space. 

Fc1 and fc0, two of the CPU's so-called "function codes," by which it 
describes what sort of operation it is carrying out, are included in order to 
rule out the case "1 1," which indicates that the CPU is responding to an 
interrupt. In that event, we do not want memory or l/0 devices to be 
enabled by the logic you now are building. 

We simply ground the RAM's OE* ("output enable*") which controls the RAM's three
states, allowing the RAM to drive the bus. This does not mean that the RAM drives the bus 
constantly, for CS1* also must be asserted before the RAM will drive the buses. 

Here's a diagram of the way the RAM's three enables are used within the chip. OE* 
does not affect writes, you will notice. 

WRIT£ 

TS enable 

Figure L18.7: RAM enables: internal logic 

Memory vs //0 Address Space 

The use of A15 to define the boundary between memory and I/0 causes the first 32K 
bytes to be treated as memory (and all are occupied by our single 8k RAM, and its 
'ghosts'-see Text sec. 1105, p. 766). The next higher 32K bytes, where A15 is high, are 
treated as l/0 space. This is wildly extravagant, of course: in fact, we are going to use only 
four of those 32K locations for I/0 devices. But we have plenty of address space to play 
with (1 M addresses). (In fact our design is still more extravagant than this : we assign a 
full half-Meg locations to I/0! Do you see how?) 

A15 

0 
----~I( 

1 

-- -- 32K 

0 

I/o 

---- 0 1------' 
&kl~s space 

Figure L18.8: Address-space allocation: memory versus I/0 
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18-5 Memory Write Logic 
The simple scheme we used earlier, whereby the RAM's WE* pin was tied to Kwr* 

(from the keypad) now should be replaced by the more complex scheme shown below. 

Figure L18.9: Memory write logic 

BUSGNE: 

'--...Y-~ KWR. (f..,., 
ke.~ p•d, p·'" ~) 

Evidently there are two possible sources of a memory write* signal, just as there are two 
possible bases for RAM enabling: 

• a manual write (when we humans have the buses); 
• a CPU write, when it is running a program. 

Most of the scheme is straightforward, but two of the circuit elements call for some 
explanation: 

• CPUwrite: 
Write-protect: the CPU is not allowed to assert the RAM's WE* pin unless A12 or 
A11 or A10 is high: that means that the CPU can never write into the bottom lk of 
memory. 

I 0 0 

0 I 

0 I 0 

0 0 I 
:$400 - - - - - -

0 0 0 "-"-.L..L...L.L.L.LJ } Cl'U ~~ITE bfockeJ 
addi"I?SS space. 

Figure L18.10: Write-protected memory region 

This arrangement is designed to protect your programs and also the CPU's "exception 
vectors:" addresses that tell the CPU where to go in case of reset, interrupt, etc. Even a 
program that goes crazy will be unable to overwrite your work. (The principal hazard to 
your programs is a runaway stack-a repeated write operation by the CPU.) 



L18-9 Lab 18: t-tl: Add CPU 451 

Testing write-protect 

You can test write-protect by going to the border between protected and unprotected 
RAM, and faking a CPU write. Here's the procedure: 

• Take the bus, as usual (get "busgive*"); 
• Apply the highest protected address to the RAM: $3FF (an easy way to get there: 

load address $400, then decrement); 
• Manually ground the pin connected to the CPU's R/W* line; this temporary 

grounding mimics or fakes a CPU write, and causes no harm: the CPU shut off its 
drive of the R/W* line (3-stated it) upon giving you the bus; 

• Watch the RAM's WE* pin with a logic probe. It should not go low. 
• Now increment the address, so that you now are applying the first unprotected 

address. 
• Confirm that the RAM's WE* pin now does what it should. 

When you are satisfied that the gating works as it should, be sure to disconnect the 
temporary ground on the CPU's R/W* line. (Make sure that you did pull up the R/W* line, 
as shown back in figure L18.3: the pullup makes sure that R/W* does not float, as it 
otherwise would each time you took the bus.) 

18-6 Single-Step: Dtack* Blocker 

The CPU demands that it receive an acknowledgment from any device it tries to read 
from or write to: that acknowledgment is called dtack* ("data transfer acknowledge;" one 
can read this as "d-tack bar"). 

This scheme is intended to adjust the CPU's response time to the varying speeds of the 
several devices to which it is attached. Most of the time, when the computer is running, we 
simply hold dtack* low, since your computer includes no slow memories or peripherals. 

We do, however, take advantage of dtack* to provide a single-step facility. When we 
choose to, we can use dtack* to freeze the processor in the midst of each of its successive 
"cycles" (usually, just memory accesses). We get dtack* to do this for us by adding some 
logic that locks dtack* high (inactive) until we hit a pushbutton. 

BUSREQ,Ue5T 
(on ke!JpadJ 
r--- ....... 

I + 

Figure 'ifs:U~ Single-step logic (dtack*-block) 

bSOOB 

When you hit the pushbutton, dtack* is allowed to go low, but only long enough to let the 
processor finish the current cycle and start the next. At the end of a cycle (marked by the 
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end, or rise, of ds*: at that time the signal called ds** clears the flop) dtack* is disasserted 
again, hanging up the processor until we again hit the pushbutton. 

By this means we provide a Single-Step function: a sort of freeze-frame slow motion. 
(The 'frame' here frozen is a single cycle, a unit smaller than a single instruction. For each 
instruction requires at least two cycles or trips to memory, and often requires four or six 
cycles.) 

For the Step* I Run switch, use the third of the slide switches on your keypad. 
Because the clock labeled "Steplt" is driven by the keypad's Adr-Clk, you can speed your 

way through instructions at a run, using the Repeat key. Adr-Clk will not affect the address 
counter while you are stepping, because the counter is frozen except during busgive*: you 
tied busgive* to Cin* of the lower '469 a little earlier in this lab. 

Br* asserts dtack* in order to allow the processor to respond to the request. (As far as the 
Q output is concerned, this Set* or Preset* overrides the Reset*, incidentally, in case both 
are asserted.) 

In a few moments you will try out your single-step function. Here's a diagram to 
explain what's going on: 

R 0~ FF 

~ 
1~ 

I 

Al>RCLIC. 
("3fepit"") 

q cf. FF 

I 

CYCLE BEGINS 

Qlow 
->dtack* hi 
=>hung up 

CYCLE CONCLUDES 

STEPIT 
sends dtack* 
low; finishes 
cycle 

END 

rise of ds* 
clears Q, 
-> dtack* 
high 

NEXT CYCLE 
BEGINS 

Hung up until 
nextSTEPIT 

Figure L18.12: Single-Step Logic (dtack*-block): Timing Diagram 
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18-7 Test Program 
The following simple program will let you confirm that your computer works, if you run 

the machine in single-step mode. 
Before writing the program itself, you should initialize the "exception vector" that tells 

the CPU how it should respond to a Reset. This "vector" is a pair of 32-bit values that the 
processor requires: 

• four bytes the processor loads into the stack pointer; these you must store at 
addresses 0 through 3; 

• four bytes the processor uses as the address of the first instruction; these you must 
store at addresses 4 through 7. The processor loads this 32-bit value into its 
program counter, and in effect "jumps" to this address. 

Address 

0000 
01 
02 
03 
04 
05 
06 
07 

loop: 01 00 
01 
02 
03 
04 
05 

(hex)Code Mnemonic 
()() 

()() 

20 
()() 

()() 

()() 

01 
()() 

4E nop 
71 
60 bra.s "loop" 
FC 
AA 
BB 

Comment 

; stack pointer, 
; to top of memory 
; plus one: $2000 

; start address 
; of your program 
; $100 

; do nothing 

; loop forever, back by 
; 4 bytes, counting 
; from 2 bytes beyond 
; start of bra 
; these values are meaningless, included only 

so that you can spot them in the instruction 
"pre-fetch" 

Figure L18.13: First Program: tiny loop 

Startup Procedure 
Enter the program above. 

In order to start running the program, proceed as follows: 

1. Put the Run/Step* switch into the Step* position (this should be one of the slide 
switches on the keypad); 

2. Hold reset high 1; 

3. While holding reset high, release br*; 

4. Release reset. 

Slow Motion Checkout 

Now (with the Run/Step* switch still in Step* position) push the INC key on the keypad. 
That should take the processor through one cycle: one trip to memory. If you get impatient, 
use the Repeat key. 

1. Yes, the "reset" switch is active high, as this name implies. The two CPU pins that effect a reset-Reset* and Halt*-are 
indeed active-low; but an inverter stands between them and the slide switch, which thus is active high. 
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You should see the processor pick up the first eight bytes of data, then hop to address 
100H. If your machine fails to do this, check that all the CPU lines that are to be disabled 
are disabled (in all cases, that means tied high): for example, IPL1*, IPLo12*, VPA*. 

If your computer does run properly, after hopping to lOOH it should begin its looping. 
Notice that the machine picks up the meaningless bytes AA, BB, even though these lie 
outside the loop. It does this as part of its automatic prefetch: the processor always picks up 
the next pair of bytes from memory while it is decoding the current instruction (figuring out 
what to do in response). Carrying out this "prefetch," the machine is simply playing the 
odds: most of the time, it needs that next word ("word" = 16 bits); it loses nothing by 
picking it up even in a case like the present one, where it does not use that word: the 
processor was busy anyway during the prefetch time. 

When you find that your machine knows how to loop, you are entitled to feel pleased 
with yourself. If your machine can loop, it can run any program. 

18-8 Full Speed (optional) 
Switching from Step* to Run mode should set the data displays and low-order address 

displays into an unreadable glow. You may want to investigate what the running program 
looks like on the scope. See if you can find the repetition points in the loop timing picture. 
Look at ds* and A3 as starting points: these should help you get your bearings. Compare 
your timing diagram with the one predicted by Motorola's timing (see Chapter 11, Fig. 
11.4, and 68008 timing data in this Manual's appendix). 

clock 
ds* 

INSTRUCTION: 
NOP BRANCH PREFETCH 

Figure L18.14: Tiny Loop timing diagram 
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Topics 

• old: 
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amusing evidence that Motorola and Intel dominate the world of microprocessors: 
an "I/M*" pin 

• new: 

Old: 

inside the CPU: 'watching' it execute a loop 

1/0 decoding with a special-purpose chip: '138 decoder 

applying the 1/0 signals: lab computer's first Out and In ports 

assembly language 

+ syntax 
+ the few important addressing modes 

"Intel/Motorola-bar" 
Last time, we tried to persuade you that it is not hard to adjust to the slightly different 

control signals used by the microprocessors of Intel (IBM PC) and Motorola (6800x). Now 
here is a chip to underline that point. It is a fancy peripheral designed to work with a 
microprocessor, and it reduces the adjustment (and thinking) process to just about nil. Look 
at pin 31 on this chip (a Siemens data-acquisition controller, the SDA8800): 

~ 27 28 29 }) 31 32 33 34 35 36 37 38 39 40 41 42 43 ) 
DDDDDDDDDDDDDDDDD 
>- o:: .- >< a: I"' Ia ~ o a x u ""I"" o - "' o~w~-a~ ~z~~~~~<<< 
~=t:}u-~~ l!)<O E 
o:: o:: a 

Figure N19.1: A pin called l/M*; and it means what it appears to mean. (Data used 
by permission of Siemens Components, Inc.) 

And here you can see the consequences of controlling the 1/M* pin: 

1/M 

RD 
(Rffl)'l 

READY (DTACK)'I 0 

----1---

The 1/M pin straps the DACO to a Siemens/lntel 80xxx or 
a Motorola 68xxx environment 

Read strobe used to clock out the contents of an internal 
register or an HSDA memory location. (The R!W line deter
mines the direction of the data transfer). 

l
. Output of the internal READY or DT ACK generator for all 

HSDA-memory accesses. 

Figure N19.2: The accomodating SDA800 makes its signals fit the processor that you choose 
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Will you, one day soon, not need the skills you are learning? Will digital design be reduced 
to squinting at your processor to see whether it says "Motorola" or "Intel"? 

New: 

1. Inside the CPU 

Most of the time we will not worry about what's going on within the CPU, except in the 
roughest terms. It may be useful, however, to make one effort to picture what happens 
within the chip as it executes a program. Hereafter, we will revert to our usual view of the 
CPU as another black box that works. We have made similar efforts to look within other 
devices: we looked into an op amp (back in Chapter 4 notes), and then into a logic gate (in 
Lab 13). 

To keep things as simple as possible, let's consider the test program listed at the end of 
Lab 18. Programs don't come much more modest than this one! We'll sketch the insides of 
the CPU, and then try to imagine what's going on inside as it moves through the program. 
We'll be doing a 'freeze-frame' picture, to speak in video terms; we'll be 'single-stepping,' 
to speak in terms of your little machine. 

First, here's a rough diagram of what's within the CPU. This is what we infer from its 
behavior; this is not an official portrait. 

DATA 
DO 

TIMINri L CONTROl 

ADDRESS 
AO 

A7 (STACX POINTER} 

' A7' ' L ________ J 

IN TERN/IL BUS 

INS7RUC. 
DECODE 

Figure N19.3: CPU innards (presumed) 

!JATA 
lJUFF. 
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The CPU In Operation 

Here's that first test program, listed in Lab 19: 

Address (hex) Code 

0000 00 
01 00 
02 20 
03 00 
04 00 
05 ()() 

06 01 
07 00 

loop: 01 00 4E 
01 71 
02 60 
03 FC 
04 AA 
05 BB 

Mnemonic 

nop 

bra.s "loop" 

Comment 

; stack pointer, 
; to top of memory 
; plus one: $2000 

; start address 
; of your program 
; $100 

; do nothing 

; loop forever, back by 4 bytes, 
; counting from 2 bytes beyond start of bra 
; these values are meaningless, 
; included only so that 
; you can spot them 
; in the instruction "pre-fetch" 

Figure N19.4: First program: tiny loop 

The program opens with 8 bytes that are not instructions, but instead are constants to be 
loaded into two registers, in order to set up the right initial conditions: one defines the stack 
pointer, which you will hear more of later; the other loads the program counter-the register 
that holds the address used by the CPU to pick up its current instruction. So, once the CPU 
has picked up that PC value-$100, here-it jumps to that location, and begins to execute 
whatever instructions it finds. 

Let's watch this step-by-step: 

First, loading constants: 

Address ~ Code 
()()()() ()() 

01 ()() 
02 20 
03 ()() 
04 ()() 
05 00 
06 01 
07 00 

INSTiWC. 

li£C oDE 

~ fl7=Sr.-'!ck/'OINT'ffl. 
I 

' ' l----------

Figure N19.5: CPU's first action after a Reset: pick up two 32-bit constants: Stack Pointer and Program Counter initial values 

Then, Executing Instructions 

Once it has picked up the constants (called the "Reset Vector"), the processor in effect 
jumps to the address listed: $100 ("$" means "hexadecimal," here). There it begins to do 
what processors normally do: picks up and executes instructions. It keeps picking them up in 
sequence, until it hits an instruction, branch, that tells it to depart from this usual pattern, and 
instead to hop back (branch always: bra). 

Below, following the program listing, is a sort of frame-at-a-time picture of what the 
processor is doing as it goes through this loop. You can see the processor picking up a byte at 
a time, and using these bytes to load the instruction register, and then the prefetch register. 
The machine prefetches always, playing the odds. When it hits a branch, it loses, and throws 
away what it prefetched ("AA BB," in this case). 
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Address (hex) 
loop: 01 00 

01 
02 
03 
04 
05 

Code 
4E 
71 
60 
FC 
AA 
BB 

Mnemonk 
nop 

bra.s "loop" 

junk 

Before the CPU can execute an instruction, it 
must fetch the 16-bit value and decode it. 

The CPU begins by picking up 4E71-and 
it knows to decode it as soon as possible, not 
to stockpile it in the prefetch register. 

Once it has picked up the 16-bit instruction, 
4E71 -which turns out to mean 'Do 
Nothing'- the processor must figure out what 
the instruction means: must decode it. That's 
the job of the instruction decoder, a ROM 
running a little state machine. The decoding 
process takes quite a long time (about 0.5 Jls: 
nearly 4 clock periods). 

While it uses its brain on the decoding job, 
the processor keeps doing a kind of automatic, 
spinal-column task: it goes back to memory 
two more times, to fetch the next word (60FC, 
in the case we are considering). It puts that 
value into the pipeline: into the prefetch 
register. 

By the time it has picked up this word it 
also has decoded the preceding instruction, 
and understands that it need do nothing. So it 
next just clocks the 60FC from the prefetch 
register into the instruction register, and 
begins the process of decoding that 
instruction. 

While it's busy thinking out this problem, it 
prefctches as usual, prefetching AABB. 

This time, on decoding 60FC, the processor 
realizes it must do something: a branch. That 
requires two minor computations: the 
processor must sign-extend the displacement 
byte (FC) to a 32-bit number which has the 
same value, -410: FFFF FFFC. Then it adds 
this negative number to the present value of 
the program counter (PC) (here things are a 
little weird: it uses $104, not $106; it ignores 
the prefetch, so there is a sort of "true" PC 
($104) and a "pseudo" PC ($106, the value 
after the prefetch)). 

LfE 
P ROGAA>< GOUNTER 

! J!A .. L., 
IT'f'~w If 1 

II itt'ST~~ 
I UCME I 
I __ _ 

P lWGP..AH COUNT~ R 

; J; ... L ,, 
60 

N19-4 

The result is the jump destination: back 
four, to $100. 

00000104-
+ Ft=FFFF-f:.C 

00000100 
BRANCJ-1 

This addition takes a little time-and you 
will see this if you look at the scope photo on 
the next page: the processor seems to hesitate 
a little before asserting ds* once again. It's 
thinking, here. 

Figure N19.6: 'Freeze-frame' picture, and timing diagram: tiny loop 
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A snapshot of the loop 

After that slow-motion account of the loop program, you can make sense of the following 
timing diagram. This is a scope photograph showing the tiny loop program. The eight traces 
are drawn by a digital multiplexer and offset-adding circuit that we put together for this 
purpose. (If you feel like it, you might try sketching such a circuit. All you need is a little 
analog circuitry and a digital mux.) 

CLK 
M" 

A1 
A1 
A1 
no 
bt 
bo 

Figure N19.7: Scope photo of 68008 running 'tiny loop' program 

What do you make of those brief highs on some of the data and address lines? Why don't 
they derail the processor? (Hint: who's driving the bus at those times? Who's reading the 
bus? (Trick questions.)) 

2. Input/Output Hardware 
A memory does most of its own address decoding; a designer need do only enough address 

and signal decoding to turn the memory on at appropriate times. 
A collection of 1/0 devices does not work that way. A typical 1/0 device occupies only 

one or two address locations, and one must add external address decoding in order to point to 
each of the 1/0 devices, making it respond at appropriate times. 

Decoding With Gates 

Suppose you want to define two input ports, two output ports, each of 8 bits. You could do 
this with gates. Let's use A15 to distinguish memory from 1/0 space, as in your lab computer. 

JN1 
Rjw..--+----1 

A15--1---l 

Figure N19.8: l/0 decoding, using gates 
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But even this small example probably persuades you that you'd rather let someone 
integrate this function for you on a chip. Here's such a chip-a decoder: the '138. It points 
to one of eight outputs, and kindly provides three enables. Try doing a similar decoding task 
with this chip: 

'' Tl" to A,5 

'TN" o/Q 

"tv, .. 

Figure Nl9.9: '138 decoder can put together categorical conditions (is it an 1/0 operation, etc.) and decode device number 

Lots easier than starting with gates, isn't it? 

'138 in your lab computer 

Here is the lab computer's way of using the same decoder: 

adr:Jresse~ 

ouTs 

clt'rl we have h ust 
fheu? lies and No: 
1r~, we n rd ~¢ 'I 

wp want -fr; "do 
Jr/ollb X/a oJ!erB--ft'oYJr. 

INII'iRT3 O;o !jOIA see whq?) 

i5u.t, o+l,erw/se; no: 

we c.ou !d u.se an lf 
pair of a.ddrers 
(t'nes. 

;; u is fo Jet her 

most end.61t'ry conrHI/ol?f' 

Figure NI9.10: '138 as wired in lab computer: we trick it into providing both in and out ports 

As soon as we have wired this decoder in the lab, we use it to drive displays and keypad 
buffer. 
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Input 

Here's the keypad buffer wired as input: 

Wherteve.r CPU 

froM (<"~nval) 
KwR, as bo\cre 

t's rCAnning a.~,.-, 
pro'vdm ! _, 

Figure N19.11: Applying 1/0 decoder: IN port 0 

And here is a timing diagram to remind you how the CPU uses this hardware: 

Min«cl LJr;fe 

K'.IR 

d,dd ( Ke.:3 V.Le >--
1 

TNPORT¢~ 
I CPLI docks 
1 in da.fa 

Figure N19.12: Timing for CPU's read from keypad 

KEYPAD 
DATA 
BUFFER 

461 
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Output 

Before we look at the lab computer's gating, let's do something simpler: use just two hex 
displays to catch a single byte output. Once we have a decoder wired, this is very easy: 

AJJ,.,, ---c===.>------

data~ 

I arch .. J into 
di>pla;:JS 

Figure N19.13: Very simple byte-display hardware: exploiting the display's built-in latch so as 
to make the display an output device 

The pulse that comes out of the decoder updates the display; such a pulse occurs on each 
operation that writes to port 0 (we might call that an out 0* operation). 

And here-more ornate-is your little computer's display logic. It is complicated by the 
scheme that blanks the right-hand display except after a word output. Again we use the 
displays' built-in latches to catch outputs from the data bus; the flip-flop holds the right-hand 
display blanked except when its contents interest us-and that interests us only after a word
sized output (16 bits) from the CPU. The hardware event that signals such an output is just 
an output to port 1. s cPu DATA sus 

;¢'"~~~~~~;I:' 

L..t'hotn <:.i.:7s•J, 

d~f~a.t) l.at'"h;l"'' df'l,;i 
2.1/ Hot cort.pl,(;..a.te.J 

bla.nk.,"' /c:o.9((: : c.onh,~o"'~;! 
blank.J ,., 9 ht J•JP'":J 1 

.and e.cmfu"li.A0"'51~ 
eMbles. l~ff 

pa.tr of 
d,~, ts. 

Figure N19.14: Applying I/0 decoder again: display logic complicated by blanking of stale information on the right-hand display 

If you find this hardware a little puzzling, that's not your fault: it's probably easier to design 
such a circuit than to follow it once it is designed. 

3. Instruction Sets; Assembly Language 

Addressing Modes 

All processors can do roughly the same small set of operations: 

• transfers of data 
• arithmetic & logical operations 
• jumps or branches & calls 

-the most interesting of these are conditional. 
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But processors differ in the orderliness and flexibility of their addressing modes. That is 
jargon for 'ways that they allow you to refer to data.' For example, you might refer to a byte 
stored in memory by listing its address: $1000; or by listing a register that holds its address: 
"A1," when you have earlier loaded $1000 into Al. Addressing modes are hard to get used 
to-especially this last example, which is called "indirect." Gradually, it will come clear to 
you. For the moment, let's just note that it is the good data-addressing scheme of the 
68000/68008 that makes it especially nice to work with. 

Text sec.ll.02, 
pp.748-51 

The Text lists the 12 or 14 "addressing modes" the 68000 (or 68008) makes available: a 
dozen ways to specify what an instruction will operate on. This frightening set of 
possibilities is enough to depress anyone new to assembly-language programming. But don't 
worry. The good news is that we '11 find only four of these possible modes important: 

• immediate 

• direct 

• absolute 

• indirect 

Now let's look at sample bits of code that use these four modes. 

Several ways to transfer data from here to there 

To get used to the syntax of assembly language, let's start with very simple examples, and 
work our way up to more interesting cases. 

We will concentrate on the issue of addressing modes, and to help us do that we will use 
nothing but move instructions, in their several flavors. It turns out that the 68000 gives you 
great freedom in defining both source and destination for this most-used instruction: you can 
use most "modes" for either. 

A. Immediate addressing 

Immediate data appears right in the program itself; this is in contrast to all other addressing 
modes, which specify data by saying where the processor should go to find it. 

Example: 

This is coded as follows: 

C de~~~~~on: addressing mode: direct (register 1 is an arbitrary 
~among the 8 possible data registers) 

move. b #100, dl 

operation 1 '\ \... 
size (by~ 

1236 
0064 

source: "#" says 'use this value as number 
not address': immediate mode 

The first word, the 16 bits, "1236," says what sort of operation is to be done; the second 
word provides the immediate data: notice that this data, '10010'-64 in hex-appears in 
the program code. That's sometimes necessary, but sometimes is to be avoided, since it 
takes time to pick up this information from memory: two trips to get this data (requiring 
about 1 JlS). 
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How the CPU decodes the MOVE instruction 

Now that you have seen one example, you can understand the encoding of information 
in the move instruction's several 'fields:' sets of bits defining sub-characteristics of the 
instruction: 

Text sec.ll.OJ, 
p. 752,fig.l1.2 

Infr.rna I c.ommands 

_.. ... t«rn on 3- sf ate 
of o¢ ... 

_ ... fhen clot-k D1 
(if. bits) 

Figure N19.15: Move instruction dissected; much-simplified picture of the way the 
instruction decoder might implement the instruction 

The lower section of the figure just above suggests the way the processor might 
implement a move from register to register, in hardware terms: let the source register 
drive the internal data bus, wait a short time, clock the destination register, whose inputs 
are tied to that bus. Nothing surprising here; our goal is just to feel that the processor is 
not mysterious, but instead a collection of familiar parts arranged to perform familiar 
functions. 

The Text points out what a large portion of all possible codes Motorola has assigned to 
moves-nearly one quarter. That's all right, because moves are used so much. They will 
make up a very large percentage of all the code that you write. In the Worked Example 
called 'Ten Tiny Programs,' for instance, 44 of the total 86 instructions are moves (these 
programs, because of their extreme simplicity probably show a higher proportion of 
moves than is typical; but the main point stands: nearly all programs rely heavily on 
moves). 

B. "Register Direct" addressing 

The example above illustrates the mode Motorola calls register direct. It's easy to 
understand, and runs fast because the registers are right on the CPU: no trips to memory 
required-except two trips to "fetch" the instruction. 

Other addressing modes: Absolute. Indirect 

Suppose we want simply to transfer a byte of data from the keypad to the data display. 
Both these ports are at address $8000 (8000 hex). One is an input, the other an output. 
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C. "Absolute" addressing: specify the address explicitly 
Motorola names "absolute" the mode that others call "direct" in which the instruction 

includes the address to be used as source or destination. Here are two examples. One 
uses a CPU register as a temporary storage place for the data: equivalent to a lay-over 
with change of planes in Chicago; the other method skips that layover. The data still is 
obliged to land in Chicago, but it doesn't get out or change planes. 

1) Using a CPU register explicitly: 

Hex Code 

1238 
8000 

Mnemonic Comment 

mo(.~ $8000, dl ; get a byte from keypad 

operati~ ~h ~ 
size (byte )I 

source 
destination (arbitrary choice, here, among 

8 possible data registers) 

11C1 
8000 

move.b dl, $8000 ; send keyvalue to HP displays 

Figure N19.16: "Absolute" addressing (along with data-register direct): "absolute" states source or destination address in 
program 

The hex codes at the left remind us that the CPU has to pick up the address $8000 from the 
program: that requires 2 trips to memory. Soon we will see how to sidestep that tedious 
work. 

Total trips to memory: 
to get instruction, 
including needed address info: 8 
to implement instruction: 1 to get data 

1 to send data 

10 trips to memory 
2) Without explicit use of CPU register 

Probably you can feel the silliness of using register dl in the example we have just done. 
You needn't use it. How could you do the same job in a single instruction? Here's a way: 

Hex Code 

11F8 
8000 
8000 

Mnemonic Comment 

move.b $8000, $8000 

Total trips to memory: 
to get instruction, 
including needed address info: 

to implement instruction: 

That's progress; but we can do better. 

; get a byte from keypad, 
; send it to displays 

6 
1 to get data 
1 to send data 

8 trips to memory 
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D. "Address Register Indirect": using a pointer 
(destination (arbitrary choice, here, among 7 possible address 
'1- registers (8th register, A7 , is committed as stack pointer) 

movea.w #$8000, al ; set up a pointer (address register) to point to both 
t . ~ keypad and data display 

operauon \ 

Now let's use the pointer: 

size (word: required for address loads) 
source: a constant (this is the "immediate" mode that you saw just 

above) 

Hex Code Mnemonic Comment 
1291 move.b (al), (al) ; use pointer twice, to point to source and 

,.....1' ~ destination of transfer 
"read from where Al points" ) 

"write to where A1 points" 
Picking up this instruction requires just two trips to memory. Because this code is so 
extremely compact, it runs fast; twice as fast as the absolute; better than twice as fast as the 
very dopiest code, the first one listed above. 

Total trips to memory: 
to get instruction 2 
to implement instruction: 2 (one input, one output) 

4 trips to memory 

But indirect addressing offers another power, even greater than its superior speed: 
indirect addressing is not just better, but is essential where the pointer must move, as it 
must in a transfer of a block of data from one place in memory to another, or in a table 
search. We will look at that important case next time. 
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Assembly Language: Notes & Examples 

Are these notes for you? 

Maybe not. These pages speak at an unusually elementary level, trying to accommodate 
the student who has very little programming experience. We try, here, to explain a couple 
of basic notions that the Text treats as well: machine language versus assembly language, 
and addressing "modes." If these ideas are familiar to you, stop right here. These notes 
would bore you. 

1. What's "assembly language"? 
Text sec. 1.02 

It's a weird phrase, isn't it? Regrettable, since it tends to make something simple seem 
arcane. Assembly language is the set of terms, close to English, used to describe a 
processor's instructions. Each instruction defines one operation: for example, 

move.b dO, d1 
says, in quasi-English, 

"move a byte (really "copy" it) from data-register zero into data-register 
one." 

What's this quasi-English for? It serves two purposes: 

• it lets us humans talk to one another about our programs ('What's your program 
say?' 'It says move.b dO, al.' 'Oh, that won't work ... .'). 

• more important, it lets us humans compose programs in more-or-less readable form 
(talking to oneself), then turn over to a computer program called an assembler the 
task of translating this quasi-English into machine language: the set of ones and 
zeros that pleases a microprocessor (and displeases a human). 

Here are a couple of instructions in assembly language, and alongside these, their 
equivalents in machine language: 

Compare Text sec. 11.03, 
especiallyfig.ll.2, 
dissecting move; and see 
class notes~ 

Assembly language 
("mnemonics") 

move.b dO, d1 

Machine code 
Hex Binary -- source 

1200 0001 0010000000u (whl'"h of ~ r-e~lsie1 
3001 ..Q9l.!, QQQO 0000 OQg! , d 
~/ \_~ ~ddr~$!".t'l'j mo es 

Li 's a. n-.ove . / , , , (for SDwrce 8.. d@Stif'l. 
Stz.e.{ijl6/32hlts) desftnaf,on( ,_, h f c. ) 

move.w d1, dO 

WniC o If• •• 

Figure X19.1: Machine code versus assembly language equivalents 

Probably you need no further argument to convince you that a human needs assembly
language, in preference to machine code. More likely, you are yearning for a still higher 
level of language, like the C, Pascal or BASIC that you are more accustomed to. 

The higher-level language lets you speak in terms closer to the way you are likely to want 
to analyze a problem. Pascal and C allow you to use terms like "If.. .else .... " Assembly 
language doe not include those terms. Most operations in the higher-level language require 
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more than one line of assembly code (if they didn't, the two languages would be equivalent; 
we would not need both concepts). But assembly language of course permits the "If ... else" 
construction. You '11 just need to articulate the several steps included in "If ... ". A function 
like sin(x) would require many lines of assembly code. This you will discover if you make 
the mistake of trying to use your little computer for a purpose better suited to a big 
computer. You may decide to write the code that calculates sin(x); but if you do you should 
understand that you are undertaking a project that may take you hours. In some cases a line 
of a higher-level language like C does translate to one line of assembly-language; but 
usually not. 

2. Examples of alternative addressing modes? 
Text sec. 10.03, pp. 680 et seq.; 
11.02 

Moving data: many ways to say "from here" and "to there" 

a) Register-to-register 

Let's start with this mode, which Motorola calls register-direct. The registers, you will 
recall, are those 32-bit-long storage places on the CPU (not out in memory). They behave 
like big banks of flip-flops, and are useful for temporary storage of information: sometimes 
they hold data (the so-called data registers usually do); sometimes they hold addresses (the 
so-called address registers usually do this job. 

Text sec. 11.03,p. 752 

Figure X19.2: CPU registers; a reminder 

The registers are handy for two reasons: 

• data registers: 

useful because the CPU can get at their contents (or load them) very fast: 
no additional trips to memory required, and trips to memory are slow (1 !..I.S 
to pick up a 16-bit word). 

a few operations are restricted to data registers. For example, an ADD 

operation must be between a data register and something else; the 
something else can be a memory location, but you can't add memory to 
memory in one operation. (See Text sec. 11.03, p.752.) 

• address registers: 

useful for the important technique called indirect addressing. We'll meet 
this in a few minutes, but in sum the notion is to use the address register to 
hold an address, then refer to that address indirectly: by mentioning the 
address register. If that sketch baffles you, hang on for a page or so. We'll 
return to the subject. 
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Now, back to the instructions: register-to-register. Here's an example: 
Example: 

c- destination: a data register, data register 1, d1 
m~e. bdO,d1 

operauon~~ 
size (byte) \ 

source: a data register, dO 
Figure X19.3: A reminder of assembly-language syntax; more examples appear in Class 19 (1-!2) 
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In the notes for Class 112 we look at other addressing modes; we won't repeat that here. 
Instead, let's make sure we agree on preliminaries: on terms, and what the listing above 
is trying to show. 

We promised to define or explain the term, "Addressing Modes" 
Text sec. 11.02, 
lO. 

This term describes the way the processor determines what to operate on. 

A homely analogy 

Some people hate homely and elaborate analogies. If you're one of these, or if you 
understand addressing pretty well, skip this silly story. But if you're struggling to get a 
grip on addressing modes, and not too proud to read a silly tale, read on. 

Imagine that an imperious, bedridden old man-smart but unable to get things for 
himself-is trying to run his business from his sickroom. He keeps some records up in 
his room, but most are downstairs, in his numbered files. To get any information he 
barks orders at his faithful manservant. 

Sometimes he says, 

"Get me box number D1 and box number D3, over there on the sofa. I want you to 
make a duplicate of what's in D1 and put it into D3 for safekeeping." 

This request resembles register-direct addressing, by which the CPU refers to a pair of 
data registers, copying ("moving") data from one to another. 

Sometimes he says, 

"Go downstairs to the main files; find out what's in box 195; copy what you find and 
bring it back to me. Put your copy into box D1 up here. Throw out the old stuff that 
was in box D1 when you finish." 

The poor servant has to go down and up a narrow flight of stairs. This process 
resembles a trip to memory (or I/0 device) to fetch data, and takes much longer than an 
operation on a box that is within the room. Motorola calls this mode absolute 
addressing. Given a choice, you-like the weary manservant-prefer to use 
information already present in the room (or CPU). 

Sometimes the old fellow says, 

"I don't remember now what file I need, but I wrote a note yesterday showing the file 
number, and put it into box A1, up there on the windowsill. Take a look, and go make 
a copy of what you find in whatever downstairs file the note says to look at, would you, 
like a good man? Put your copy into box D1 up here-and, by the way, destroy 
whatever old stuff was in box D 1." 
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This elaborate scheme, hard to describe, but helpful to the old curmudgeon, resembles 
indirect addressing, using an address register on the CPU to hold the address. 

Okay. Enough of that. Back to the addressing modes. 

Addressing Modes: 

Incidentally, Motorola sometimes uses the term "effective address" to say something 
similar. Only examples can make these notions come clear. Let's try an example of 
each, and a paraphrase of what the mode means: 

direct 

absolute 

immediate 

example: move.b dO, dl 

The source or destination is specified explicitly by 'name' (in this 
case, both source and destination are specified in this way). 
Motorola reserves this term for register operations; conceptually, 
the term ought to apply equally to operations on named memory 
locations. Motorola calls those operations by a different term, 
'absolute.' 

example: move.b $8000, $8000 

Source or destination (here, both) are specified by naming its 
address. In this example, the $8000 could be a memory location 
or an I/0 device; in your lab computer, the first $8000, used as an 
input, is the keypad port; the second $8000, used as an output, is 
the data display. 

example: move.w #$8000, aO 

Source, here, is a constant, a value that appears in the program 
itself. Notice that this mode says something simpler than what 
absolute says: the processor needn't rush off to location $8000; it 
just puts the value $8000 somewhere. That 'somewhere' in this 
example is arbitrary: the destination, here, happens to be an 
address register-addressing mode is direct. Immediate mode 
applies only to sources, incidentally. You can convince yourself 
with a moment's thought that "destination immediate" makes no 
sense. 

(address-register-) indirect: 
example: move.b (aO), (aO) 

If aO has been loaded with $8000 beforehand, as in the preceding 
example, then this silly-looking instruction would pick up a byte 
from the keypad (in your lab computer) and deliver it to the 
displays. (This you saw in class notes ~2.) 

Those are enough addressing modes for our purposes, except for the auto-increment and 
auto-decrement modes, which we choose not to reach until we speak of moving pointers 
(you will see them used in the stack operation PUSH, as well). We will reach that topic 
in a Class 21 program, and you will find an example of this mode in action in the Text 
program 11.1, as you may already have noticed. 



Reading: 

Problems: 

Lab 19: ~2: 110 

A second look at chapter 10 re: I/0: 
10.06-10.08 reprogrammed I/0. 
10.17 briefly, re: assembly language. 

11.01-11.04, re 68008; 
11.05 describing a controller much like 

the one you re building. 
The following Figures are especially 

helpful: 
Ch.JO: 

10.7: XY output hardware 
Ch.ll: 

11.1-11.4 re 68008; 
Fig. 11.5 showing parallel I/0 port, 

again much like what you build in 
this lab. 

11.5-11.8 re: use of decoders and effects of 
incomplete address decoding 
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Today your circuit becomes a computer by any standard, with the addition of a little 
hardware that lets it do I/0 operations under program control. You will find the hardware 
addition minimal: a second pair of data displays and some associated logic, an l/0 decoder, 
and a couple of flip-flops with 3-states buffering their outputs. We will continue to write 
out the small programs for you; next time you will begin to write your own. 

The changes and additions you will make today to the circuit you built last time are 
shown on the next page. They are indicated by shaded areas. 
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Big Picture IT: 
Changes and Additions to Lab Computer Circuit: ~1 to ~2 

Figure L19.1: Changes and additions to circuit: f!l to f!2 

19-1 Battery Backup 
The battery-backup circuit shown below will keep the RAM powered when the +5 supply 

is shut off: the two AA cells provide the necessary 2.0 volts (or more). Check that your 
battery backup does deliver this voltage to the RAM when the + 5V supply is off. 

RAM 
blHe~ 
backvp 

8K X 8 
STATIC 

RAM 

+S" 

2\3 

V+ 

GNP 
1~ 

Figure L19.2: Battery backup supply 
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19-2 Power-Fail Detector: Protection Against Glitches on Power Down/Up 

The circuit below senses the level of the +5 supply, and disables the RAM when the 
supply is low. When disabled, the RAM is immune to the spurious pulses that are likely to 
drive its WE* pin during the powering down and up of the gates that drive that pin. 

The power-fail detector switches the RAM off at around 4.2 to 4.5 volts. You may want 
to bring power in to your computer close to this voltage monitor: if you do not, your power 
supply may be dangerously close to the 'fail' trip level under normal conditions. (The 
displays and processor draw about 100 rnA each; these large currents, adding to about 1.5A, 
cause a drop along your power buses of several tenths of a volt.) 

-t5 

330 

1N748'iS' 
(3.')v) .l 

RAM 

Figure L19.3: Battery backup detail: power-fail detector 

Input/Output Hardware and Programming 

19-3 110 Decoder 
Let's wire the decoder first. We will test it, then apply it to its first useful work: 

controlling the output displays. 

cPv ADR BuS 

Figure L19.4: I/0 decoder 

As you can see, enabling of the decoder (a 74HCT138), like enabling of the RAM, is 
conditioned on INTA: we require that this signal not be asserted. The decoder is enabled 
by addresses at 8000H and above (up to 64K, when A15 rolls over to zero); your computer 
will use only four locations in this enormous l/0 space (the lowest 32k of address space, 
you recall, is defined as memory space). 

One of the 138's connections is a little curious: R!W* is connected to the 138's S2 (MSB 

select). Thus the 138's eight outputs make up four INPUT ports and four OUTPUT ports. 
(I!O addresses asserted with R!W* high will be treated as IN, and with R!W* low will be 
treated as OUT.) 
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Testing the 1/0 Decoder 
To give you a little reward for this wiring work, and to see if you have done it right, let's 

test the decoder with a very simple program. The program will do an input operation from 
port 0 (=address $8000), then an out to the same port. You will watch the program do this, 
in single-step mode, to confirm that the decoder asserts first its INO* pin, then its OUTO* 
pin. Then we'll run a small variation on this test, and move on. 

Test Program 

Here's a little program to test the decoder: 

; DECODER TEST 
portptr = aO 
Start Address: llOH 

110 307C MAIN: movea.w #$8000, aO ; point to PORT 0 
8000 

114 203C 
ABCD 
EFBA 

move.l #$ABCD EFBA, dO 

llA 1080 MORE: move.b dO,(aO) 
11C 1210 move.b (aO), d1 
11E 60FA bra.s MORE 

; set up distinctive 32-bit 
; display value (at first we will use 
; only the 'BA' byte: 8 bits of the 32) 
; do an OUTO operation 
; do an INO 
; keep doing it 

Figure L19.5: Program to test 1/0 decoder: In, Out, at port 0 

Incidentally, in order to run this program at $110 as listed, you will need to change the 
"Reset vector:" at address $07 write a $10 in place of the $00, so as to change the startup 
address from $100 to $110. 

Note on word-sized pointer definitions 
In using only a word-sized move to the address register, we are doing 

something a little unusual, but it works, and saves you some keying-in of 
values. The 68008 always uses 32-bit addresses, but it permits word-sized 
loads; it then "sign extends" the value loaded (as the process conventionally is 
called): fills the high 16 bits with the level of the MSB.l 

Single-step through this. Mter the pre-fetch at address $11C, 11D, you should see the first 
novelty-which usually makes a person think something's wrong: the address bus shows 
$8000. '$8000?,' you may want to object, 'my whole program is down around $110!' Yes, 
but the address bus carries the //0 port address as well as memory addresses: this is your 
first encounter with the processor's broad-minded view that I/0 operations are just like 
memory operations. That $8000 is, of course, the address of the I/0 port we call "Port 0." 
On the data bus, at that time, you should see the 'BA' that you set up in data register dO. 
This time, it goes nowhere; ordinarily it would be clocked into a register of D flops. 

During the OUTO operation, at the time when the address bus is showing $8000, poke the 
decoder's outO* pin (pin 15) with the logic probe: confirm that it sits low. 

Now step through one more instruction and watch execution of the /NO: this time, the 
same address should appear on the address display ($8000); the data display should show 
$FF (how come? Hint: who is driving the data bus during this IN? (Trick question!)) Poke 
the decoder's inO* pin (pin 11); it should be low during the operation. 

1. 'tl\e process 11> called by tht!> Odd name because 1t preserves tl\e stgn of a 2' -complement number; addresses are not signed, so 
the concept does not fit. The word is applied here nevertheless. 
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Word-sized and Long-word sized operations 

Now change the In and Out instructions from byte to word size: to do this, just change the 
1080 and 1210 codes: the leading hex digit determines size, and should change from 1 to 3. 
Now the processor should do an OUT to $8000, then $8001, then an IN from the same 
addresses. Confirm this, using the logic probe as you watch the address displays show 
$8000, $8001. Now, just to let the processor show off, you might change the size of the 
move to long word: change the 1080 and 1210 (now 3080 and 3210) to 2080 and 2210, 
respectively. Watch the decoder's response. 

Full-speed (optional) 

Now go to full-speed: switch from step* to run mode, and watch outO* and out1 * pins of 
the '138 on two channels of the scope. The low pulses should last about two clock cycles 
(how long is that, at 8 MHz), and should be separated by four clock cycles. That is the fixed 
rate at which the CPU transfers data to and from a memory or peripheral. 

Once you are satisfied that the decoder works properly, you can use it on its first mission: 
to drive the data displays. 

19-4 Data Displays 
The data display chips include latches, as you know; these let us achieve a stable display 

while a program is running, even though the data bus is rapidly and continually changing. 
We will use pulses from the I/0 decoder to update the displays: first, byte-wide (keeping the 
right-hand pair of digits blanked), then word-wide (using all 4 hex displays) in the case 
when the CPU is putting out 16 bits, in its two 8-bit passes). 

Byte versus Word Display 

The left-hand pair of digits shows all byte outputs, as you know already: you have been 
watching this pair all along. This pair of digits also serves to show the high byte of "word" 
outputs (Motorola refers to 16-bit values as "words"). 

The right-hand pair of displays should be blanked except after the CPU has output a 
word. The logic shown below aims for this result. 

8 CPU DATA BUS 

DATA DISPLAY (Vee '7, Gt-JD:(,\ 
(HI' So82.- 73~0 - ~ '""id) 

Figure L19.6: Display latching & blanking logic 

Latching Outputs: Byte/Word 

When the CPU sends out a byte, it will appear on the left display; when its sends out a 
word, it will appear on both displays. 
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For example, if register DO holds the 16-bit word, ABCD: 

a byte-size write (or OUT) to 8000H 
would put out CD, on the left-hand display. 

move. b dO, 8000H 

A word-size write to 8000H would put 
out ABCD on the two displays. 

move.w dO, 8000H 

L19-6 

\c\ol I I 

Figure L19.7: How Byte/Word outputs appear on 
16 bit display 

Display Blanking 

The Blanking logic shown above is designed to let the right-hand byte-display show 
data only when that data is helpful, rather than distracting. That means that the low-byte 
display should be blanked (dark) except after the CPU has done a 16-bit OUT. 

Only a write to 8001H turns on the right-hand display. Any of three other events turns off 
the right-hand display: 

1. a write to 8000H (because this might be a byte-write) 

2. busgive* (because data coming from memory is always a byte wide). 

3. step* because we use this for troubleshooting and usually want to see the data in 
each memory location as we single-step. 

When you do not want step* have this effect, simply open the step-with-display switch. 
Then you should find that after the first word output, the display shows you 16 bits, not the 
eight that step* usually shows. This option is useful primarily for checking this display 
hardware; once you are satisfied that it is working you may want to leave the switch closed. 

Timing Programs 
The next few programs will exercise the CPU's operations of word-size and larger, and 

also will test your data display hardware. When you have built that hardware, try these 
programs. 

19-5 Delay Loop: 32-bit, With Display Test 

This program fragment-which will soon be demoted to "subroutine" status-is useful 
mostly in order to kill some time. It also tests your new output hardware. 

The suggested delay value (the $1046C loaded into register D1) produces a delay of 1/4-
second. If you get impatient waiting, shorten the delay. 

Debugging note: when single-stepping this program be sure to replace this 
large delay value with some tiny delay count such as 2; otherwise you will 
spend your afternoon in the delay loop! 

The program puts out a byte, pauses, increments the display value, then does it all again. 

Put this little program at address 160H and up ("160H" means "hexadecimal 160;" 
sometimes written as $160). You must fix the Program-counter loading vector stored down 
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at the bottom of memory in order to run this program: replace the OlOOH stored at addresses 
6 and 7 with the value 0160H. 

; LONG DELAY (32 bits) 

160 

164 
166 

168 

307C main: 
8000 
4240 
1080 

223C delay: 
0001 
046C 

; increments display 
; port at about 4Hz, to demonstrate 

1) delay loop; 
2) 8 versus 16-bit-display hdwr 

dsply =dO 
delay= d1 
portptr= aO 
Start Address: 160H (not 100H)) 
movea.w #$8000, aO ; point to dsply 

clr.w dO 
move.b dO,(aO) 

; port 
; clr dsply val. 
; show current sum 
; (first pass only) 

move.l #$0001046C, d1 ; init 32-bit # 
; for about 1/4 
; second's delay 

16E 5381 timekil: subq.l #1, d1 
170 66FC bne.s timekil ; loop till zero 
172 5240 addq.w #1, dO ; incrmnt dsply val. 
174 1080 move.b dO,(aO) ; show current sum-

; first as byte, 
; later as word 

176 60FO bra.s delay ; do it again 

Figure L19.8: Delay loop, with display test 

As you single-step this program, don't let the effects of prefetch throw you (you saw the 
same thing when you tested the I/0 decoder, so probably you don't need this warning): the 
machine executes the instruction before the one it just picked up from memory. So, for 
example, you will see the CPU pick up 60 FO from memory-an instruction that means 
"branch back 16 addresses"-and then the address bus will show you $8000. One might 
assume that the processor had jumped or branched to $8000. Not so. Again this is the port 
address, put out as the processor executes the preceding instruction, 

move.b dO, (aO) 
"timekil" in the program listing is a label, included for the convenience of human readers, 

not for the machine. You, or the assembler if you have one, must specify the relative branch 
distance-a 2's complement value measured from 2 bytes beyond the branch instruction 
itself. If you had written this program on an assembler, the machine would have made that 
calculation for you. The difficulty of such computations is one of the two best arguments 
for assemblers (if you need any convincing). The other is, of course, that a machine should 
be assigned the tedious job of converting mnemonic to code. 

Modify the program to put out a word, and confirm that your displays show you this 16-
bit value. To change a byte-size move to word-size, just change the leading hex digit from a 
1 to a 3. 
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Debugging note: for programs that output to displays 

While you single-step, your displays will not latch the output as they do 
during full-speed execution; instead, they will show you everything on the 
bus, and byte-size only. To make the displays show you latched values 
while you step, open the switch that links the "step*" line to pin 1 of the 
HCTlO; pin 1 now will be pulled high, and the displays will perform as 
they do in full-speed operation. 

L19-8 

When you are satisfied that the display hardware works properly, probably you will 
want to close the switch that links step* to pin 1 of the HCTlO. Now you should find that 
flipping to step* mode while the word output program is running at full speed makes the 
display revert to byte output. 
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Class 20: !J.3: AID<->DI A Interfacing; Masks; Data tables 

Topics: 

• Stack 

explicit use: PUSH & POP 

implicit use: subroutines CALL 

• Programming: 

Flags: combinations 

Masking: isolating a single bit, or group of bits 

• Hardware: 

Dl A interface 

AID interfacing: alternative schemes 

A. Programming Issues 

1. The Stack 
Text sec.10.03 

The "stack" is just a storage table somewhere in RAM. But it works in a curious way 
that requires some explanation. We cannot postpone discussing it, because your programs 
begin to use it almost from the beginning. 

The stack is a region of RAM pointed to by "the stack pointer"-which is just one of the 
address registers (A 7). The very first action the processor takes after reset is to load its 
stack pointer; that is a clue to how fundamental the 68000's designers thought use of the 
stack was to orderly programming. 

We put the stack at the top of memory (one above, in fact). Then, when we store 
something on the stack the pointer is decremented first, and the something is stored. 
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Stack Use 
Text sec. 10.03, 
fig.10.4,p. 682 

Class 20: J.!3: A/D<->D/A Interfacing; masks; data tables 

1. Explicit "Push" of data 

move.w d2, -(a7) 

move.w (a7)+, d2 

; stack pointer: $2000; 
; Let's suppose register d2 holds the value AB CD 

; store contents of register d2 
; on the stack ("PUSH") 

; recall the saved register value ("POP") 

A7 
"STACK'' AM!I.. 

)--+ (li.AM) t 2 

n . 1 0 0 0 
FFF 

)____.. 1 F F E 

pointer ... .. after ''pusH" 

.. . before use.. ... 
(<'..,r'fi'aliud lv $2.00{) 

on stutufl (!l..eset)) 

Figure N20.1: Stack used for temporary storage of register contents 

2. Automatic use of stack: "Return address" 

N20-2 

The stack is used automatically whenever one uses an instruction called "branch to 
subroutine" (bsr): the processor automatically saves the "return address" on the 
stack, so that when it finishes executing the subroutine, it can return to the place 
from which it "branched to subroutine." 

Here's the idea: 

\, 

I 

imf!!t'clt "/)1)5/t" 
c{ return ~ddr-es5 
on C!lLL (~ 13SR I 

\ 

'".... "-),. 
"-..._, 

L'mplt'ct't )op" ....._ '""( 
of rel~rn addreH 

0>1 JlETUf\{1) {=!I..T5) 

"' OA 
0 1 
DO 

oo 

,bELA'1' 
SuSf'.CUT(NE 

l 
tzooo 

i<- e fu '" address / ....._ 
' \ / 

2' / 
-"< 

Figure N20.2: Stack use in subroutine call 
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) 

STAC 1<: 
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Lab 20 includes a diagram showing stack use on a particular subroutine call. Here's that 
diagram, again: 

rl. 
-- q;

2000 

6efare use o{ stacv; 
stark po,'nier; i!-ddre.;s 
re1,sler A?; S<.-k just 
above the fcp of KA~, 

(we don'f kvJcw or cue 
INh at ua/<Aes hc;J;JPn fo 

OA 
0 i 
00 
oo 

X 

$1FFC 

$1FFA 

$1FFC 

be Ln -J-I,e locnh'cn> fh~l 
wr'l! Sfrtle "-" ST!lc/L,) 

Bs'P... c~ <Asrs CPU 
fv sfvr-e c-15 !ZETUA!'J 

Allb!USS on He 
sf ack (that t'<, fAe 
addr-ess of 1-Ae next 
iV1sf-mc+ioV1 fu 6e 
t/xf'cu it:d 0f}fr sc;brouf>'m) 

-- $2ooo 

, , an J f0e CPU 
rpf-urns · f-D ft.., 
sfor-rd a r_ld r-t'SS I i10/1; 
:N h pre Lf res lA r>1/''f 
execu t/oVI a{ /Yl!f!N 

Figure N20.3: Stack use on a particular subroutine call: subroutine 'Delay' from address $108 
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2. Flags 

Here are the .flags of the 68000 Gust flip-flops dedicated to storing these particular items 
of information, items reflecting results of recent CPU operations). These flops make up part 
of the "status word" register. 

STATUS REGISTER 

s 
TAACE __j I 

SVPE71.VISOR_j 

MOlJE 

"INTElCT<VPT I<II!Sk" ''FLAG 5'' 

12 I 1 IO X N Z V C j 
EXT EN])---------'' I 

SIGN--------~ 

ZERo--------~ 

0 V E 7l. FLO W ----------' 
CARAY----------~ 

Figure N20.4: 68000 flags 

We'll see in a few minutes that the 68000 allows us to use all of the 16 (!)combinations of 
these four flags. For the moment, however, let's think about just one of the flags. 

The flag we use most often is the Zero or Equal flag, used, for example, in the BNE and 
BEQ instructions. Let's start, therefore, with a program that looks at the Z or EQ flag. 

Conditional Branch: 

a) Straightforward 

Here is the first program in the second micro lab. It increments the data display every 
second or so. How does the processor determine whether to loop back again, or to fall 
through to the "addq" instruction? What does it look at in order to decide, as it executes the 
conditional branch instruction, bne? 

; LONG DELAY (32 bits) 

160 307C main: 
8000 

164 4240 
166 1080 

168 223C delay: 
0001 
046C 

; increments display 
; port at about 4Hz, to demonstrate 

1) delay loop; 
2) 8 versus 16-bit-display hdwr 

dsply= dO 
delay= d1 
portptr = aO 
Start Address: 160H (not 100H)) 

movea. w #$8000, aO ; point to dsply 
; port 

clr.w dO ; clr dsply val. 
move.b dO,(aO) ; show current sum 

; (first pass only) 
move.! #$0001046C, d1 ; init 32-bit # 

; for about 1/4 
; second's delay 

16E 5381 timekil: subq.l#l,dl 
170 66FC bne.s timekil ; loop till zero 
172 5240 addq.w #1, dO ; incrmnt dsply val. 

174 1080 move.b dO,(aO) ; show current sum-
; first as byte, 
; later as word 

176 60FO bra.s delay ; do it again 

Figure N20.5: Straightforward use of Zero flag: decrement until a register hits zero; branch on zero flag 
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A plausible answer, but not quite right, would be, 'It looks at register dl.' If you look at 
the instruction bne you find this answer must be wrong: bne is silent concerning what it is 
that is 'not equal'---or 'not zero,' to put it more clearly. 

Here's a sketch to remind you that the Zero flag is just a flip-flop that records whether the 
result of an operation was zero: 

F 
(vPbA7 E) 

Z FLA IT 

Figure N20.6: Zero flag: a flip-flop recording whether a result was zero 

Bne says nothing about which data or address register to look at because the processor 
looks at none: it looks at just the single flip-flop in the flag register: the Zero flag. In this 
case, that flag does reflect the value of register dl after the subq. But bne doesn't know 
that; you do--you, the programmer must make sure that the flags do describe the value that 
interests you. Usually this works without effort on your part. But it is possible, as you can 
imagine, to mess things up, if you let something intervene between the operation that 
interests you and the testing of a flag. You'll recognize this problem if you meet it: perhaps 
after an hour spent wondering why your program now and then branches wrong! 

b) Masking: a way to make flags reflect selected bits 

The previous program looped until a register hit zero, setting the Zero flag. Sometimes a 
program needs to branch on the condition of not an entire register or memory location but 
on the level of one or a few bits. For that case, one needs a way to ignore all the other bits. 

1- Single Bit Test 

Here is the lab's Ready-Check routine, which looks at the Ready Flop's Q on line dl of 
the data bus, at port 1. 

Rdychk: move.w d4, -(a7) 
move.b $800l,d4 
andi.b Ill, d4 
beq.s 'rejoin' 
move.b (aO) ,d2 

move.w (a7)+,d4 
rejoin: rts 

Rdycheck: leaves addend register 
unchanged unless Rdy key (Wr*) has beenhit 

assumes main has set up aO 
to point to keyport 

d2 brings in key value 
a call to this would replace 

"move.b (aO) ,d2" 

save scratch reg 
take in Rdy & junk 
check Rdy bit: mask all but data line dO 
if not ready, leave addend unchanged 
if Rdy, take new value 

from keypad as addend 
this also clears flop 

recall saved reg 
back to calling program 

Figure N20.7: Lab 20 'Readycheck' routine: mask all but one bit 
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And here is what that andi.b #1, d4 operation does: 

AN]) 

1>'1 ~01 - 7>1./ 
0 0 

0 0 

7 0 0 

0 0 Z Fi.AG 
0 0 
0 0 
0 0 

J'..DY RDY---

INPUT • -MI!SK.-+ T<ESULT _F (UPDATE} 

Figure N20.8: Mask operation: AND uses O's to force bits low, 1 's to preserve bits 

The processor offers instructions that will work on single bits (testing, setting or clearing 
a single bit). So you might think you did not need to know how to apply a mask in 
software. Not so. 

2- Testing More Than One Bit 

A mask is more versatile than the bit-operation instructions. A mask can throw out, say, 
four bits, keeping four. Here a mask is used that way, in order to help the program discover 
which single key the user has entered at the keypad. The mask is needed in order to allow 
the program to concentrate on the latest key value, ignoring the latest-but-one. 

200 3F04 

202 1810 

204 0204 
OOOF 

208 OC04 
OOOA 

20C 670A 

ZOE OC04 
oooc 

212 66EE 

214 4E71 

kmatch: 

look: 

;KEYMATCH fragment 
; assumes main program has set up an address register 
; to point to the keypad: 
; "movea.w #keyport, aO" ; point to keyport 

move.w d4, -(a?) ; save scratch regstr 

move.b (aO), d4 ; get key value (8 bits) 

andi.b #$OF, d4 ; force high nybble to zero (this is 
; the old key); keep low nybble 
; (this is the most recent key) 

cmpi.b #$A, d4 ; is the most recent key "A"? 

beq.s 'doA' ; if so, do something 
; appropriate 

cmpi.b #$C, d4 ; is it C? 

bne.s 'look' ; if neither A nor C, go look 
; again (the silly human has hit 
; the wrong key!) 

nop ; must be C, if we landed here 
; so this is what we do if we get C 
; (you write something more 
; interesting than "NOP"!) 

Figure N20.9: Mask used to keep 4 bits, throw out 4 
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3- Other Masking Tricks: Setting, Clearing & Toggling Bits 

The Boolean operations allow one to use masks to manipulate bits or sets of bits: 

FOli.Ct:S SELECTED 

JJTT /-IJGH 

OR'"r=>-
CLEA"R: a ''0" 

FORCES JELECTED 
BlT LOW 

ORlG~D-

~ 'f" IOGG-L E: a 
(0/'1 PLE/'IENTS 

OlUGlNA L 

Figure N20.10: Masks used to force, clear or toggle selected bits 
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The set and clear tricks are used, for example, in a program that needs to drive a pulse on 
one line while holding 6 other lines constant, thus: 

0000 
0000 
0000 
0000 
0000 
0000 
0000 
0004 
0008 
0008 
0008 
OOOA 
oooc 
0010 
0010 
0012 
0016 
0018 
0018 

367C 8003 
327C 8001 

70 3E 
1680 
0000 0040 

1680 
0200 OOBF 
1680 

4E75 

;STARTUP subroutine: sends silence code without 

startup 

awaiting Ready: needed on first pass. Uses dO, 
which is used for output code throughout 

if pointers are not already set up, define them thus: 

movea.w #$8003, a3 point to Vox data port 
movea.w #$8001, al point to the generic Ready-bit port 

moveq #$3E, dO send silence code. Strobe is low. 
move.b dO, (a3) send to talker 
ori.b #$40, dO force Stb bit high, leaving other bit 

unchanged 
move.b dO, (a3) send it, Stb high 
andi.b #$BF, dO force Stb low 
move.b dO, (a3) send it 

rts the deed is done 

Figure N20.11: Votrax talker program: sends pulse on STB Line, leaves other 7 lines untouched 

4- Other Flags Besides Zero: Carry, Sign and two oddballs 

The Zero flag is the one you're likely to use most often, but you sometimes will want to 
use others. The 68000 kindly allows you to branch on combinations of flags. Some of 
these are pretty bewildering: 

cc carry clear C* LS low or same C+Z 
cs carry set c LT less than N + V* +N*V 
EQ equal z MI minus N 
GE greater or eq NV +N*V* NE not equal Z* 
GT greater than NVZ* + N*V*Z* PL plus N* 
HI high C*Z* vc overflow clr V* 
LE less or equal Z+NV*+N*V vs overflow set v 

Tw.rf\ ucTtoN Fo11t<111T 

(ON~/TioA.J 

0 1 1 Cl ~ 'O-BIT biS~LAC/:Jif)J7 
/6-Bir ~ISPL{tCEMENT/ IFJ = 0 

Figure N20.12: 68000 branch conditions (listed under B.,) 

The main point to note here is that you must choose the appropriate flags depending on whether 
or not you are working in signed (2' s complement) notation. 
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Usually we work with unsigned values, so we should avoid the following conditions which 
assume 2's comp: 

BGE 
BGT 
BLE 
BLT 

Figure N20.13: Beware these deceptive conditions, which assume you're thinking of values as signed 2's comp usually you are not 
thinking of them that way-for example, when you write an address 

Take a look at the puzzling combinations of flags these conditions use, if you need convincing. 

Or consider the following case: suppose you compare a register against a constant, planning 
to continue until the 'moving' register (the one you are incrementing) passes the constant. 
Suppose you reason that you want to keep going so long as the pointer is less than or equal to 
the constant; that's reasonable enough, and it sounds reasonable to choose the condition, 
"BLT." 

You might write: 

movea.l #$9000, al 

doitagain: move.b $somewhere, (AO)+ 

cmpa.l Al, AO 
ble doitagain 

; set up end marker 

; use the moving pointer & increment it, 

; to store something in memory 
; moving pointer, AO, minus constant, Al 
; continue so long as AO ~ Al 

Figure N20.14: Faulty use of signed condition on unsigned value 

This fails at once. BLE looks for a bewildering combination of flags (BLE = Z + N·V* + 
N*·V, where N is the negative condition of the sign flag, and Vis the 2's comp overflow flag!) 
And since $9000 has the MSB high, it is treated as a negative number, less than the $400 at 
which the moving pointer begins. The program would fall out of its loop on the first pass. The 
remedy is simply to use BLS, which assumes unsigned values (it looks at the Z and Carry flags 
only). 

The other conditions work fine with unsigned values. The following pair is especially easy 
to use--easier than the seemingly-simpler carry-set/carry-clear conditions: 

BID 
BLS 

These are used after a compare. Watch out for the fact that compare (like SUB) subtracts the 
first item from the second. Here's a data compare: 

cmpi.b #$10, Dl ; Dl minus #$10 
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And here are two possible conditions to use after an address compare: 
doit: 

one way: 

versus 
abetterway: 

cmpa.l AO, AI 
bne 'doit' 

; AI minusAO 
; loops until Al = AO 

; AI minusAO 
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cmpa.IAO, AI 
bls 'doit' ; loops until Al exceeds AO (a good way to check whether a 

table-read or table-fill is completed; assume AO holds the 
end-of-table address). This one works: BLS does not assume 
2's-comp, thus does not look at sign of the result. 

Figure N20.15: Two conditions one might use in an end-of-table test. BNE is a little dangerous 

The second condition, BLS, is a little safer than BNE: if the pointer sneaked past the end 
marker, BLS would not be fooled; BNE would be fooled. How could the pointer 'sneak by?' 
Perhaps you might put the end marker at an odd address, then change the data transfer to 
word size, for example; then your pointer would never equal the odd end marker. So, use 
BLS and BHl when you can. 

B. Hardware: linking AID & D/ A to the computer 

1. Generic: separate AID, D/A 

How would you use the 1/0 decoder's signals, and other hardware as needed, to link an 
8-bit A/D, D/A to the computer? 

JJATA 
EUS 

8 

8 

llr't:. OVTl 

Figure N20.16: Tying separate 8-bit A/D, D/A to computer 

We hope you're beginning to think it obvious that you need a 3-state on the input side, a 
register on the output. 
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2. Using a particular chip: one-chip AID, DIA package: AD7569 

Here our job is eased because the manufacturer has done so much of the wiring for us, 
on-chip: 

CPU DATA BUS 

3-s-tafe 
hus drivers 
i hc!u. ded 

,---,--....,....-, 

lei/ the Aj!), 
IJJh en lo sfarf . •. 

"D/A l nelLA des 
latch 

.. . we don't It's fen -ftJ hu" 
wll~11 !t/tJ S41fS 'be~ • 

Figure N20.17: AD7569 one-chip A/D, D/A (8 bits): lab wiring: we ignore conversion-done signals 

We had some choices to make in driving and listening to its control lines. We chose a very 
simple scheme: we do not check to see whether a conversion has been completed, as you can 
see from the figure above: we ignore its two signals that might give us that information 
(BUSY* and INT*). 
This scheme leaves to the programmer the task of making sure the computer does not ask 

for data until the AID has had time to complete a conversion. (That's easy, given this 2.6 us 
converter.) 

b- Fancier: polling: Let the converter tell the computer when data is ready 

IN1 

dl---< 
(datd bus) 

A 7) 75 6 9 

r----QINT 

Figure N20.18: Letting converter tell CPU when data is ready: polled 

This "fancy" scheme (not very fancy, really) turns out to be less clever than the simpler 
arrangement, because the converter is so fast: its conversion-time, 2.6 J.l.S, does not allow the 
processor even enough time to ask 'Ready?' 

c- Fancier still: Interrupt 

The INT* line could also interrupt the computer, as its name makes evident. This may 
sound like an elegant arrangement, and sometimes it is. But not here: the interrupt response 
itself takes longer than the AID takes to convert (at least 9J.ls versus 2.6 J.l.S). You need to 
understand interrupts; but not in order to use this chip. We will postpone considering 
interrupts for a couple of sessions: until Lab 22. 
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Reading: 

Problems: 

10: 10.03 comments on stack; figure 10.4 
helps here. 
Note how close the example in 10.08 is 

to the keypad plus Ready that you 
build in this lab (don't worry yet 
about interrupts, discussed as well in 
that example). 

10 & 11: The following Figures are especially 
helpful: 

Ch.IO: 
10.4 re: stack. 
Fig. 11.5, again, showing parallel I/0 

port; this time it is the input port 
that resembles what you add in this 
lab. 

11.14 (input port); 11.13 (program to clear 
arrays) 
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Today you get a chance to put to use the hardware you wired last time: you will wire up 
just a little additional hardware: an 8-bit input port (this is a 45-second job: just link the 
decoder to a gate already in place), and a 1-bit Ready flag (this takes a little longer, both to 
wire and to understand). Once again the programs are very simple, though the Ready-check 
program introduces you to a new trick called "masking." 

These notes open with a software change that appears small but is important: the delay 
routine that you wrote last time is transformed into a subroutine; instead of jumping or 
"branching" to it, you "call" it, using the "stack" to store the return address. 

20-1 Invoking Delay as a Subroutine 

The following program uses the delay routine that you entered last time, but modifies it 
so that it can be used as a subroutine. 

What does that mean? It means that the "main" program here-the one that simply puts 
out the value of DO as a byte, then as a word, increments DO and then does it again-"calls" 
the delay program. The Call or "Branch to Subroutine" instruction (the latter is Motorola's 
name: BSR for short) is a clever sort of jump that is capable of returning to the calling 
program at the right address upon executing a Return from Subroutine (RTS) instruction. 
BSR and RTS work, as you know, by using the Stack to save the return address. This 
ability is just what we want in a delay routine, because we want to be able to invoke it from 
wherever we happen to be in some other program. 

The Delay routine begins with a push to the Stack-storing the value that was in the D1 
register. We do this here just to illustrate a good practice: don't let a subroutine mess up 
registers permanently. Such a mess-up may startle some other calling program. (Our 
"main" program does not use D1, so we here could safely omit this saving of Dl.) Just 
before returning to the main program, the routine "Pop"s the old value of Dl off the stack, 
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restoring it to D 1. If the program failed to pop old D 1, we might lose it, in the general case. 
But something much worse would happen, as well. Do you see what? 

You will need to fill in the branch instructions. They take the form: 
op code (8 bits) displacement (8 bits) 

The displacement is a 2's-complement number, relative to (the address of the branch 
instruction)-plus-two. We have done one of the cases for you. 

BSR 61 (branch to subroutine; unconditional) 
BRA 60 (branch always: unconditional) 
BEQ 67 (branch if result zero) 
BNE 66 (branch if result not zero) 

Labor saver: JSR 
You may prefer to use Jump Subroutine, JSR, which lets you specify a 16-bit destination 
address rather than a displacement. (You cannot do the same lazy trick with the conditional 
branches.) Here is the JSR code: 

4EB8 0160 JSR $160 
The "0160" here is arbitrary; you put here the starting address of the subroutine you want to 
invoke. JSR uses the stack exactly the way BSR does. 

You must assign addresses, as usual: Main to 100H. The subroutine-which is just a 
slightly modified version of the old Delay program--can sit at 166H; if it does, you can use 
the code already entered to generate the delay. That will save you a little typing. 

0000 
0000 
0000 
0000 
0000 
0000 
0100 307C 8000 
0104 4240 

0106 1080 

0108 615C 
010A 3080 
010C 5240 
010E XX 
0110 XX 

0166 3FO,l 

0168 223C 0001 

016E 5381 
0170 66 FC 
0172 321F 

0174 4E75 

046C 

display increment pgrm 

dsply = dO 
portptr s ao 
Origin: Start at lOOH 

main: movea.w i$8000, aO 
clr.w dO 

show: move.b dO, (aO) 

(R) bsr. s 'delay • 
move.w dO, (aO) 
addq.w U,dO 

(R) bsr. s 'delay' 
(R) bra.s 'show• 

point to dsplyport 
clear display register 

show current value, 
as byte 
invoke delay routine 
show it as word 
increment display 
pause 
do it again 

DELAY subroutine: kills time, messes up no registers 
place it at 166H 

(P) 

delay: move.w dl,-(a7) 

move.l #$0001046C, d1 

hang: subq.l n, d1 
bne.s hang 
move.w (a7)+,d1 

rts 

push to save 
main reg 

init 32-bit It 
for about 
1/4-second dly 

loop till zero 
pop to restore 

main reg 

Figure L20.1: Byte/Word display; delay invoked as subroutine 
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Observing Stack Operations 
This program, when single-stepped, affords you a rare opportunity to watch the CPU's use 

of the stack in slow motion. This use will look odd at first. But stick with it. It does make 
sense in the end. 

Here is a sketch of stack use in this program. We can watch the stack and its pointer, at 
successive points in the program. (Compare Text figure 10.4, showing PUSH and POP.) 

before any 
use of stack 

after bsr 

after Push of Dl 

after Pop of Dl 

after RTS 

Stack Stack Pointer 

OA 
01 
00 
00 

? 
? 

OA 
0 1 
00 
00 

OA 

01 
00 
00 

'X-

J 

$1F"FC 

$1FFC. 

,..---...,<- $2ooo 
OA 
0 1 
00 
oo 

')( 

Figure L20.2: Stack use: delay & display increment program 

Debugging suggestion: for programs that include call to Delay 
When single-stepping this or any other program that includes a call to a 

delay subroutine, you can speed your debugging of any part of the 
program other than the delay call by eliminating the call to delay: 
temporarily replace the BSR Delay instruction with a NOP ( 4E 71 ). 
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20-2 Improved Delay Routines (optional) 
If you are feeling pressed for time, or if you want to postpone programming 

complications for a while, hop on to section 20-3. But if you feel ready to try variations on 
a theme, you might enjoy the Appendix to this lab, which suggests several alternative 
versions of the delay routine you have just tried. These alternative delay routines will be 
useful in later labs, though none is necessary. 

Input Hardware 

20-3 Data Input Hardware 
Connect the decoder's IN 0* pin (address 8000H) to the gate (74HCT08) that drives the 

keyboard data buffer's EN*: 

---------. 
HC,-32 

/ INPoRT¢ 

(nsfallecl ear!t~r, 
in La~ 1 fr. 
See FtJ. L(g. 9, p. 't>o) 

K"YPAD 
DATA 
BuS 

?'I HC. 541 

8-BIT 'OUFFER 

CPV DATA BUS 

Figure L20.3: Keyboard data buffer enable logic: CPU control added 

20-4 Input/Output Program 
The following program allows you to input a value that is to be added to DO while the 

program is running, instead of always incrementing the display value as in the earlier 
program. This program uses the data buffer hardware you have just connected to the INO* 
line. 

0100 
0104 
0106 

0108 
010A 
010C 
010E 
0110 
0112 

307C 8000 
4240 
4242 

1080 
XX 
1410 
0042 
XX 
XX 

(R) 

(R) 
(R) 

movea.w i$8000, aO 
c1r.w dO 
c1r.w d2 

show: move.b dO, (aO) 
bsr.s 'delay' 

get: move.b (a0),d2 
add.w d2,d0 
bsr.s 'delay' 
bra.s 'show' 

Figure L20.4: Input test program 

point to dsp1yport 
clear display register 
clear key-value register 

show current value,as byte 
invoke delay routine 
get key value 
form new sum 
pause 
go show new value 
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Operations on Bytes/Words 

When you are satisfied that this program is working properly, use a word-sized output 
("move.w ... ": the first hex digit is 3 instead of 1) and try replacing the word-sized add, 
DO 42 add. w d2, dO 
with the byte-sized equivalent, 
D002 add.b d2, dO. 

We hope the result will let you feel what you glimpsed last time, the tidiness of this 
processor's way of treating different-sized data: it can act as if it were an 8-bit processor, or 
16 or 32, depending on your choice. 

20-5 Ready Signal 
The 1/0 program you just ran would work better if you could determine when to give it 

a new value to treat as its addition constant. As the program stands it can lead the program 
to take some value you are in the process of changing: you may have entered one of two 
new key values. Here we will add a circuit that typically is necessary on an input port: a 
signal that tells the computer when valid data is available. 
Evolving the 'Ready' Hardware 

Here is a first, poor suggestion for the Ready hardware: 
+5 

Figure L20.5: A poor way to tell the computer data is ready 

In the present application this method would work: you would need to hold the ready line 
down long enough to let the computer get the new data (that's no hardship at normal 
computer clock rates); you would find yourself giving the computer its new data thousands 
of times over. (The switch bounce here is harmless.) 

But it is more useful to work out a design that lets us give the machine new data just 
once each time we hit an Enter key (which would tell the computer Ready). Usually that is 
the better scheme. This change requires a slight program change, and a trifle more 
hardware. Here is the hardware: 

+ 

c.l>v 
l>ATA 
eus 

Figure L20.6: A better ready circuit: value input once each time 'enter' is hit 

To finish the circuit you need to choose an appropriate line from the '138 to clear the 
Ready signal. 
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20-6 1/0 Program With Enter/Ready Function Added 
When you think you have your hardware correctly done, try it in this amended I/0 

program. In place of the instruction 
move.b (aO), d2 

at label 'get,' write a bsr to the following Rdychk routine: 

0000 
ocoo 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0140 3F04 
0142 1838 8001 

0146 0204 0001 

014A XX 

014C 1410 

014E 381F 

0150 4E75 

20-7 Decimal Arithmetic 

(R) 

Rdycheck: leaves addend register 
unchanged unless Rdy key (Wr*) has been 
hit 

assumes main has set up aO 
to point to keyport 

d2 brings in key value 
a call to this would replace 

"move.b (aO) ,d2" 

Rdychk: move.w d4, -(a7) 
move.b $8001,d4 

andi.b #1, d4 

beq.s 'rejoin' 

move.b (a0) ,d2 

rejoin: move.w (a7)T,d4 

rts 

save scratch reg 
take in Rdy 

& junk 
check Rdy bit: 

mask all but 
data line dO 

if not ready, 
leave addend 
unchanged 

if Rdy, take 
new value 
from keypad 

as addend 
this also 
clears flop 

recall saved reg 

back to calling 
program 

Figure Ll0.7: Ready-check routine 

Humans are accustomed to the decimal numbers, and accommodating processors know 
how to add in that base. For a byte-size add, you can simply replace the ADD with ABCD 
command ("add, binary-coded decimal"): 

C102 abed d2, dO 

This puts the result of the addition into DO, as before. Try this in the keyboard-input 
program. 

Decimal addition works only on inputs that are in BCD form. If you set up an input of 
"B" on the keypad, for example, you will find that the result of the BCD addition goes bad: 
it will not be restricted to BCD but will wander into Hex. ABCD is not clever enough to fix 
a non-BCD input; instead, the decimal addition simply amends the result of an arithmetic 
operation so that the result (initially in ordinary binary form) is transformed to "packed 
BCD": two BCD digits per byte. 
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For example: 
Decimal 

8 
+5 
13 

Lab 20: jl3: Subroutines; More I/0 Programming 495 

Binary 
()()()() 1000 
00000101 
()()()() 1101 

Packed BCD equivalent 
same 
+same 

0001 0011 
Executing the decimal addition, the processor notes that LSD 
exceeds 9 after the ADD. So it cleverly adds 6 so as to fix result. 

Decimal addition fails if the input is not in "packed-BCD" but ordinary binary. The 
following example illustrates what decimal addition cannot fix: 

Decimal 

17 
+20 

37 

Binary 

0001 0001 
0001 0100 

Packed BCD equivalent 
0001 0111 
00100000 

0010 0101 0011 0~ 111 (This answer, correct in BCD, would have resulted 
..___ '---- ~ only if the input had been entered in BCD form) 

- --.....__No Change: ERROR 

This time the processor finds that neither LSD nor MSD exceeds 9 
after the ADD, so it senses no need to adjust the result. But the 
result is wrong in BCD: 25. 

You can confirm this limited cleverness of the processor by putting in keyboard values 
that exceed 9. You could write a program capable of handling such inputs, converting them 
to BCD form before adding them; but that task would require programming skills that we do 
not now assume you to have. 

(End of Lab 20; Appendix listing alternative delay routines follows) 

Appendix: Alternative Delay Routines 
As we said in the notes above, you do not need these routines, and they may overdose 

you with programming issues, if you are meeting assembly-language programming for the 
first time. But you would find these alternative delay routines useful, and you may be an 
experienced programmer already, or just eager to look at variations on a theme-always a 
good device for revealing a subject. 

The Delay routine listed in 20-1, above, uses a constant delay determined within the 
subroutine. To change the delay you need to go into the routine and alter the value by hand 
before invoking Delay. The alternative versions of Delay set out below may be more 
convenient as general-purpose time-killers. We assume, in suggesting that you might want 
to install an improved Delay, first, that you have a battery backup that will preserve any 
Delay you install; and, second, that you will need delays in several later programs. You 
need delay today in order to make the count-up process slow enough to watch. Later you 
will want a more versatile version, especially when you fill a table using an AID; at that 
time, the delay value you want will be much smaller, by a factor of perhaps 1000; in 
addition, you will want to vary the delay value easily. 

Both of these alternative Delays set out below allow one subroutine, never altered, to 
generate a variable delay. The method, perhaps obviously, is simply to let the calling 
program (the one that invokes the subroutine) load a delay count into a memory location; 
the Delay subroutine then uses that value. 
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Delay: Version 0 
The first version, below, is just section 20-1 's DELAY, listed to remind you of the scheme 

on which we are trying to improve. 

; DELAY subroutine: kills time, messes up no registers 
; place it at 166H 

delay: move.w d1,-(a7) 

move.l #$0001046C, d1 

hang: subq.l #1, d1 
bne. s hang 
move.w (a7)+,d1 

rts 

push to save 
main reg 

init 32-bit # 
for about 
1/4-second dly 

loop till zero 
pop to restore 

main reg 

Figure L20.8: DELAY subroutine: version 0, as listed at the start of this lab (fig. L20.1) 

20-App-1: Delay: Version 1 
The second version, below, loops a number of times determined by the memory value 

stored by the calling program. This permits very short delays, but it requires the programmer 
to recalculate the delay each time it is to be altered. 

Notice that one needs to load the delay value only once somewhere in the main program. 
After that the value stays in place, undisturbed by its use in DELAY I. 
0000 
0000 
0000 
0000 
0000 
0000 
0400 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0004 
0004 
0008 
OOOA 
OOOE 
OOOE 

2F38 0400 

53B8 0400 
66 FA 
21DF 0400 

4E75 

Alternative DELAY subroutine: value stored 
in memory; loaded from calling program 

place it at 166H 

assume main program includes lines like--

dlycnt equ $400 ; storage location 
; for long-word delay 
; count 

move.l #$0001046C, (dlycnt) ; init 32-bit # 

-----------
;The following delay routine would use the delay loaded 
; in the main program: 

delay move.l (dlycnt), -(A7) 

hang: subq.l #1, (dlycnt) 
bne.s hang 
move.l (A7)+, (dlycnt) 

rts 

save val that'll 
be messed up 

loop till zero 
restore val that 
was messed up 

Figure L20.9: DELAY subroutine: version 1 : calling program determines number of loops 

20-App-2: Delay: Version 2 
The third version, below, eases a programmer's work by letting him or her determine once 

for all what count generates a 1 ms delay; that delay value is fixed within the subroutine. 
Then the calling program determines how many milliseconds of delay it wants, using the 
method used in Version 1: the number of milliseconds count is stored in a memory location 
accessed by the subroutine. 

This version of the routine is probably the most convenient. It does not permit very short 
delays. But you can, of course, go into the subroutine and alter the fixed delay by hand. 
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0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0004 
0006 
0006 
OOOA 
oooc 
OOOE 
OOOE 
0012 
0014 
0014 
0016 
001A 

3F38 0400 
3F01 

3238 0100 
5341 
66 FC 

5378 0400 
66 F2 

321F 
31DF 0400 
4E75 

SUBROUTINE MsDELAY 
This one would include its own loop--say 1 ms, 
and the calling program would determine the 
number of iterations before calling (this time 
a word should do: up to 65k milliseconds! 
you need to decide what constant to use to 
generate 1 ms delay. Here we'll call it just 
MSVAL 

MSVAL EQU 256 

msdelay move.w (dlycnt), -(A7) 
move.w d1, -(A7) 

loopdeloop: move.w MSVAL, d1 
msloop subq.w #1, d1 

bne.s msloop 

subq.w #1, (dlycnt) 
bne.s loopdeloop 

move.w (A7)+, d1 
move.w (A7)+, (dlycnt) 
rts 

just for example 

save val that'll be messed up 
and a register 

inner loop, for 1 ms 
count down to zero 

now decrement ms count 
loop till zero 

restore vals that 
were messed up 

Figure L20.10: DELAY2 subroutine: version 2: calling program determines number of milliseconds of delay 

20-App-3 Delay determined during program run 
Both of the revised versions of Delay-DELAYl and DELAY2-lend themselves to a 

nice program device: altering the delay value while a program runs, to see quickly the effect 
of differing delays. This facility is very useful in the Lab 21, where the delay value will 
determine the AID sampling rate. 

The main program would need to load the delaycount memory location from the keypad. 
As you do this, consider some possible difficulties: 

• The key value is limited to 8 bits. If you need a delaycount value larger than that, 
your program will have to magnify the key value in one way or another. Here are 
some suggestions: 

You might shift the key value left, one or more places. Each shift doubles 
the value, as you know. 
You might load the key value as the high order half of the delaycount. 
(This would be equivalent to shifting left 8 times, of course.) 

• The program fragment that checks the keypad will take some time, of course. So, 
adding this fragment will affect the total delay. That's all right if your delays are 
long (in the ms range); it may be annoying if the delays you want are very short. 
Probably you will want to alter the delay value only when you hit the Ready key. 
Otherwise the delay would be determined by the particular value sitting on the 
keypad when you began to run your program. That would annoy you. 
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Class 21: j.l4: More Assembly-Language Programming: 
12-bit port 

Topics: 

•old: 

•new: 

Old 

stack 

- Programming: 

* table copy 

* Getting data from AID 

- Hardware: peripherals of more than 8 bits 

1. The Stack 

Just to confirm that you understand how the stack works, let's try an example; this time, 
let's call a subroutine from within a subroutine and watch what happens. Does the stack get 
confused? 

Suppose the main program calls1a program named Dosomething, and Dosomething calls 
Delay. Here's how the stack history would look: 

Su.bro,.-fine 

DOSOMf THI/'16 

Su.brot.A.-fine 
DfLAY 

® ]: ;jl RT 

®nH 

1 0 

0 0 

00 

"DELIIV"J; 
; f 
I I ,, 

(PUSH) 1 I ,, 

I 
I 

I 

( 

I / 
l?efu..rn fo I // 

00SOM£TJ.I/N6 /I /,/ 
/ / 

/ / 

~---=..:.:.---/ 

Figure N21.1: Stack use as call occurs within a subroutine 

I 
I 

/ 
/ 

/ 
/ 

/ 

I 
I 

I 

\ 
I 
I 
I 
I 

I 
I 

The stack automatically makes the returns work properly-unless we, the programmers, 
blunder. 

Query: what would happen if the subroutine Dosomething called itself? (You computer 
science hotshots know the answer, no doubt; anyone else probably will need to stare at the 
diagram for a minute to settle the question.) 

1. "call" is the generic name for the process Motorola names "branch subroutine," "bsr" or "jump subroutine," "jsr" 
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New: 

2. The most important application of indirect addressing: Moving Pointer 

We have been promoting the addressing mode called "indirect"-or "address-register 
indirect," as Motorola describes it. Its main virtue then appeared to be speed; it was 
compact, too. 

Here we meet the case where indirect addressing is not just preferable but is required: the 
case where we need to work with a table in memory: to fill it with data, or read data from it, 
or search for some particular data. Let's look at an example. 

Text sec. 11.02, 
ex. 11.1, p. 748 

To copy $100 words from one place to another (Exercise 11.1 in Text), one can use two 
pointers, and another register to count transfers: 

movea.l #$AOOOO, aO 

movea.l #A8000, a1 
move.w #$100, dO 

transfer: move.w (aO), (a1) 
addq.w #2, aO 
addq.w #2, a1 
subq.w #1, dO 
bne.s 'transfer' 
end 

; set up a pointer (address register), to source block 
(in Text example, installed memory reaches much 
higher than in our Lab machine) 

; destination pointer 
; set up count register 
; transfer a word 
; advance pointers 
; (advance by two bytes: word) 
; decrement count register 
; keep transferring untill6 are done 

Figure N21.2: Program to copy $100 words: uses counter register and explicit advance of each pointer 

But here's a tidier way, letting the processor advance both pointers automatically after 
using them (so-called "postincrement register indirect" mode). Notice that the processor 
is smart enough to notice that it needs to advance the pointer by two addresses, since the 
data is 16 bits ("word" sized). 

transfer: move.w (a1)+, (a2)+ 
subq.w #1, dO 
bne.s 'transfer' 
end 

; transfer a word, & advance pointers 
; decrement count register 
; keep transferring until16 are done 

Figure N21.3: Tidier copy program: lets CPU take care of advancing both pointers, using auto-increment 



500 Class 21: 114: More Assembly-Language Programming N21-3 

That's pretty neat. It can be made neater still by compressing the decrement of dO 
and conditional branch into one complex instruction (see Text example program 11.1): 

subq.b #1, dO 
bne.s 'transfer' 

compresses to 
dbf dO 'transfer' 

Figure N21.4: A further compression of code: db/includes both decrement of counter and conditional branch 

This compressed form is good not just because it looks neat; it also runs faster: 18 
clocks, versus 26 for the pair of instructions it replaces. "dbf' is a strangely simple case 
of a fancy instruction. It means 'decrement a count register and branch back if not yet 
at -1;' the "f' stands for false, and expresses the fact that in this form the instruction 
assumes false the condition that it could, instead, be asked to test. So, we waste part of 
the power of the instruction, which is to look at other flags before decrementing, and 
then break out of the loop if the condition is true. 

This instruction is so peculiar-so 68000-specific-that it is not worth teaching 
except as an example of the kind of processor specifics that you would be much 
concerned to know if you ever found yourself getting deep into assembly-language 
programming. That event becomes steadily less likely, as higher-level languages are 
applied to the programming of even rnicrocontrollers. 

3. Hardware: Peripherals of more than 8 bits 

You have met this issue already: the data display that you built in Lab 19 takes a 16-
bit output. You saw that the processor is as happy to put out 16 bits as 8; from the 
programmer's point of view there's practically nothing to the difference: just write ".w" 
or ".b" to define the size; in machine code the difference is one bit (e.g., byte-sized 
moves begin "1. .. ;" word-sized moves begin "3 ... "). 

Let's try another example: wiring separate 12-bit AID and D/A's to the computer. 
This job turns out to be easy. It may help to recall that the processor does not know (or 
care!) whether the things appearing at these two addresses are i/o devices or memory 

locations. It's up to you, the designer and programmer, to treat the i/o gadgets 
similarly: as if they were two memory locations. So, the more significant digits go into 
the lower address, for example. 

In doing this example, assume an l/0 decoder already wired, and providing as many 
ports as you need. 
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JJI\TA 
BUS 

Figure N21.5: 12-bit NO. D/A: wiring details 
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D/A 

That extra 4-bit register on the output side makes sure that the D/ A gets updated all at 
once; otherwise it would be fed a strange mixture of old and new samples for a short 
time (about 0.5 11S, if fed by our 68008). 

Text sec. 9.19, 
table 9.4, p. 620 

We did not worry about the equivalent problem on the input side: making sure that all 
12 incoming bits were from a single sample. (Do you recognize how a 12-bit input 
device of slightly different design might deliver such a screwy mixed sample? You'll 
see this issue treated in a Worked Example called 68008 peripheral of more than 8 bits, 
if you're interested.) 

We didn't need to worry about mixed input samples, because the processor cannot be 
surprised by a conversion that finishes between the two pickups (between high-4 and 
low-8 bits). It cannot be surprised because it is the processor that decides when a 
conversion is to begin, and the processor knows when a conversion has been completed. 
A free-running converter, in contrast, could cause such mischief by completing a 
conversion between pickups, and the Worked Example considers such an input device. 
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2. Programming 

Getting data from the lab AID 
Here, the only difficulty comes from the rather annoying fact that the AD7569 does 

not begin a conversion until told to do so (it might be nicer if it made the default 
assumption that it was to begin a conversion when the last value was read). 

So, we need to think a bit about when to give this start pulse. Here's a plausible, but 
foolish answer. This program is to take in AID values endlessly, sending them to the 
D/A: 

startit: 

movea. w #$8002, a2 
D/A data ports 
movea.w #$8003, a3 
move.b dO, (a3) 

move.b (a2), (a2) 
bra.s startit 

; point to ND, 

; point to AID start port 
; start A/D. (query: what are 
; we sending? 
; from A/D, to D/A 

Figure N21.6: Badly-placed A/D Start instruction 

The trouble is that the AID does not have time to convert, between Start pulse (evoked 
by the instruction at startit) and the data read in the next instruction. (A timing diagram 
in the Lab notes may help on this point.) You might think that you needed to pad the 
program with delays; that turns out not to be necessary, if you can find a way to let the 
AID convert while the program is busy doing something it needs to do anyway. 
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Ch. 11: Worked Examples: Assembly Language: 
Ten Tiny Programs 

You have seen a number of examples of small assembly-language programs, in Lab 20 
and in Chapter 11. Chapter 11 concludes with a very large example, the signal-averaging 
instrument. In case you would like more very small examples, here are little programs to 
implement the schemes suggested in Lab 21, the lab that brings data in from an AID and 
sends it out toaD/A. 

0. 0 nee for all: pointers 
Let's set up some pointers, as usual, then invoke them in all the programs below. We 

want to use pointers because the code that uses them will run much faster than code forced 
to specify addresses directly, as you know. 

movea. w #$8000, aO 
movea.w #$8001, a1 
movea. w #$8002, a2 
movea.w #$8003, a3 

; point to displays (&keypad) 
; point to Ready port 
; point to converter data port 
; point to converter start pin 

Figure X21A.l: The usual pointer initializations. We assume these in all the programs shown in these notes 

By the way: sign extension 
Today you probably don't care, but sometimes you will need to know, as we have said 

before, that a word-sized move to an address register gets extended automatically to long 
size: the CPU repeats our MSB (high, in this case), so as to preserve the sign. So, our 
"#$8000" gets loaded into aO as the 32-bit value, $FFFF8000. Strange, huh? Our circuit 
doesn't care. Why not? 

1. Testing AID 

Your program needs to start the converter, then read it. It needs to give the converter time 
to finish a conversion: an attempt to read during conversion aborts the conversion, evoking 
bad data. 

Here, to remind you, is the way the converter is wired, and a timing diagram showing 
what the converter wants, and when the start instruction delivers the start edge. 

Incidentally, this example, which requires us to stare at the hardware a while before we 
can write code, is characteristic of the programming we want you to learn in this course: not 
fancy programming, but programming intimately fitted to the hardware. 

Here is a reminder from the lab notes: the '7569's wiring and its timing characteristics. 
First, here is the way the chip is wired to your little computer: 
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I I 
I AD75b~ 

: cornbme<l : 
1 ADG/DAC. 1 DAC 

GND 

Figure X21A.2: '7569 converter as wired in Lab 21 

And here is a timing diagram describing the way it behaves: 

ST (•ourPoRT:3) 

DATA 

wR (: OUT1'oRT2) 

Figure X21A.3: '7569 timing 

Surely the scheme we want is roughly 

• start converter 
• read AID and display result 
• do it again 

Let's try writing it that way. 

X21A-2 

STAR TAD: move.b dO, (a3) ; start ND (this sends a pulse, from the I/0 
decoder; we don't give a hoot what data 
we put on the bus, because no one is 
looking! 

move.b (a2), (aO) 
bra.s STARTAD 

; pick up a byte, show it on displays 
; ... and keep doing it, forever 

Figure X21A.4: Defective AID test program: not enough time for conversion 

Why use source dO in the first instruction? Why not send a zero, say? Because fetching a 
zero from memory takes time; dO is in the CPU, so the instruction runs faster than, say, 
"move.b #0, (a3)." 
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Timing 

The timing here is bad: 

rnovd d¢,(a3) 

OUI(JDRT3 

!Ni'ORT 2. 

OUTPO!I.Tcf 

"-----....---
/nstrud-t'on {etrh 

rnove.A (a2)
1 

(a.¢) 

<f-----~ fimt ava1/d/~ ~~ 
~ converston: 

~ c::: 7.? cloc/Ar:::.1.'-?• 
i11sfrud1~n (etch Nor E,v,u6H. 

Figure X21A.5: Ill-considered placement of Start and Read instructions does not allow enough time for a conversion 

The converter wants 2.6 l.l.S to convert, worst-case; we are giving it about 1.5 l.l.S. 

Remedies 
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We could pad the program with a NOP or two. That's okay if necessary, but in this case 
it is not necessary. A rearrangement of the instructions solves the problem: once in the 
loop, let the conversion take place during the relatively-slow branch operation. BRA uses 
18 clocks: 2.25 11.s: almost enough in itself. 

Here's the rearranged code: 

FIRSTPASS: move.b dO, (a3) 

nop 

PICKUP: move.b (a2), (aO) 
move.b dO, (a3) 
bra.s PICKUP 

; start AID, first pass: if you want to be sure 
to get valid data first time, you need this; 
you might decide you could live with one 
bad sample! 

; here's that shabby delay padding: 11-!s 
; pick up a byte, show it on displays 
; start AID 
; ... and keep doing it, forever (now the AID is 

converting during this BRA) 

Figure X21A.6: Corrected AID test program: enough time for conversion 

2. Te_sting D/A 

This is much easier. The D/A wants no start pulse. We need only send a byte to the 8-bit 
register that feeds the D/A. To see whether the converter is working properly, we can let the 
program "ramp" a digital value, and then watch to see whether the D/A output ramps nicely 
on the scope. We will watch, particularly, for strange bumps and holes in the staircase, a 
pattern that can reveal which bits are stuck (high or low) or interchanged with other bits. 
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clr.b dO 

SENDINC: move.b dO, (a2) 

addq.b#l,dO 
bra.s SENDINC 

; clear the register that is to be sent to D/A: a 
little compulsive, but nice if you single
step the program, especially 

; send it (this time, dO is not junk, as in the 
earlier example: it holds the gradually
growing value) 

; increment the value to be sent 
; ... forever 

Figure X21A.7: D/A test program: incrementing value sent to converter 

4. In & Out 
After the AID test, this is utterly easy: all we do is redefine the output port: 

TRANSFR: move.b (a2), (a2) 
move.b dO, (a3) 
bra.s 1RANSFR 

; from AID to D/A at a stroke! 
; start AID 
; ... and keep doing it, forever (now the AID is 

converting during this BRA) 

Figure X21A.8: IN & OUT program 

The line labeled "TRANSFR" looks crazy, doesn't it? Some skeptical student always 
protests, 'But you're not doing anything at all. You picked something up and put it back.' 
Someone else may object, 'The trouble is, whatever strange thing you're doing, you do it 
twice.' Do you see why these plausible objections are wrong? 

That's right: those two "(a2)'s" are not the same operation, and do not operate not twice 
on one object, but once on one object (the A/D), then on another (the D/A): 

+ the first use of "(a2)" is a read, and it takes a byte from the AID 
+ the second "(a2)" is a write, and sends a byte to the DIA-a distinct device (though 

it happens to cohabit with the AID, in a single chip) 

Once you have this program working, you will want to modify it to include a call to a 
delay routine. That will let you bring the sampling rate down into the range of the low-pass 
filters suggested in Lab 21. 

5. Invert 

As the lab notes suggest, you need NOT, rather than NEG (2's complement), because 
NEG has the funny property that it leaves zero unchanged. That's good in a number 
system, but not good in an inverter: if the input waveform ever touched zero, the NEG'd 
output would stay there: 

full scale ---

ov __ /\/'\_ __ __ _/\/\ __ _ 

V\J 
/1/EG- NOT 

Figure X21A.9: The trouble with NEG as a waveform inverter 
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And here's the program. Only one instruction is changed, from the plain In, Out program: 

FLIP: not.b (a2) 

move.b dO, (a3) 
bra.s FLIP 

; from AID, flipped, and back to D/A, still all 
at a stroke! 

; start AID 
; ... and keep doing it, forever (now the AID is 

converting during this BRA) 

Figure X21A.10: INVERT program 

This is a bit of a fluke (resulting from the fact that AID and D/A sit at the same address), but 
isn't it magically compact? There's a lot going on implicitly in the instruction, "not.b (a2):" 
You can figure out what's happening if you ask yourself, 'How does the CPU flip every bit?' 
No, it doesn't sent little bit-flipping secret agents to wrestle with every bit out there in I/O
land (or in memory, if this happened to be an operation on memory), standing each bit on its 
head. No, instead, it brings the value onto the CPU, and operates on it there. 

So, the instruction brings in a value, flips it, and sends it out again; implicit in this 
instruction, therefore, are three distinct operations: 

• first, a read from (a2): from the A/D, in this case; the value is taken into some 
unnamed CPU register-some unmarked CIA register never mentioned in the 
68008 data book: but we know it has to be there. 

• then the CPU flips every bit (in this case; in another case it might add something to 
the value taken in, and it with something, or do whatever other process you wanted 
to specify); 

• finally, the CPU writes the flipped value out to the address from which it took it. In 
this case, that place-though the same in address-is not the same as the source 
from which the data came: it is the D/A, not the A/D. (If this were an operation on 
RAM, instead, then the flipped value would go back to the same location, and 
would overwrite the earlier value.) 

6. Full-wave Rectify 

Here, for the first time, we need to do an operation conditionally: flip the waveform if .... 
If what? If the input lies below the midpoint of the waveform. How can we detect that? 
It's easy: the AID output ranges from 0 to $FF; at the midpoint, the MSB goes from low to 
high. So, $80 will serve as midpoint (or $7F; it's a tossup: the true midpoint is halfway 
between the two!). 

You might think, therefore, that we ought to compare the input to the midpoint. 
Something like, 

INTAKE: move.b (a2), dO 
cmpi.b #$80, dO 

; from AID 
; see if input value < midpoint 

Figure X21A.ll: Clumsy way to check whether input exceeds midpoint of range 

Then we'd do some branch conditional on the result of the compare. 
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If you're getting used to the 68000's versatile addressing, you may prefer something like 

move.b #$80, dl 

FIND VAL: cmp.b (a2), dl 

; load a register (for speedy compare) 

; see what AID has to offer (midpoint- value, 
this time) 

Figure X21A.l2: Another clumsy midpoint test 

Actually this isn't such a good idea, because you need to pick up the data in any event. 
Still, if you thought of it, good: the 68000 can operate on memory or I/0, and sometimes 
you should take advantage of that power. Not this time, though. 

Sneaky use of a flag 

It turns out that we can skip the compare operation, because one of the CPU's flags-one 
of those on-chip flip-flops that records the result of recent operations, including data 
moves-already has just the information we need: the answer to the question whether the 
MSB is high or low. That flag is the sign flag, used in 2's complement operations. So, after 
picking up the data we can branch on that flag at once. 

The fact that the sign flag always describes the MSB is worth remembering: it provides 
the fastest possible single-bit test: if you put a Ready key, for example, on d7 of the data 
bus, you need apply no mask before doing a conditional branch. You will see that done in 
the worked example called 68008-based frequency counter, which follows immediately 
after these notes. (There, it is an overflow flag that is tested by this method.) 

Now, here's the rectify program modified to use the sign bit: 

INTAKE: move.b (a2), dO 
move.b dO, (a3) 
bmi.s SKIPFLIP 

not.b dO 

SKIPFLIP: move.b dO, (a2) 
bra.s INTAKE 

; from AID 
; start AID 
; if MSB is High (==> "minus" in 2's 

complement convention), then send the 
value out at once 

; but in the other case (input less than 
midpoint), flip the sample 

; either way, send it 
; ... and keep doing it 

Figure X21A.13: FULL-WAVE RECTIFY program, using quickest test of input versus midpoint 

This is quick, but the code includes one dangerous trick. Do you see it? 

Here it is: we let an instruction intervene between the operation that interests us and the 
branch. Does the program work, nevertheless? 

Yes. It does because we were careful (or lucky!) to use dO again in the start AID 

operation. Thus the sign flag still has the right information when the program reaches the 
bmi instruction. 

You can see that a program could easily run awry when written this way. One might 
write the following code, quite plausibly: 
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INTAKE: move.b (a2), dO 
move.b dl, (a3) 

bmi.s SKIPFLIP 

; from AID 
; oh, send any data register-it's only the 

start pulse that we want 

Figure X21A.14: Faulty variation: a start instruction that messes up flags 

But with this plausible code the program would fail. Do you see why? 

7. Half-wave Rectify 

509 

In this case, instead of flipping the input we just force it to the midpoint. So all we need 
do is replace the "not.b dO" instruction with 

moveq #80, dO 
The moveq instruction is compact Uust 16 bits, including the data), but it is strange, too: 

+ it is always long in size (here we simply ignore the higher order bits, which happen 
to be J's--see the next point:) 

+ the instruction sign-extends the specified constant as it loads the entire 32-bits of 
the register (this is the same as the effect we mentioned earlier when speaking of 
address registers loaded with a word). 

The program now looks like this: 

INTAKE: move.b (a2), dO 
move.b dO, (a3) 
bmi.s SKIPFORCE 

moveq #$80, dO 

SKIPFORCE: 
move.b dO, (a2) 
bra.s INTAKE 

; from AID 
; start AID 
; if MSB is High (==> "minus" in 2's 

complement convention), then send the 
value out at once 

; but in the other case (input less than 
midpoint), force value to midpoint 

; either way, send it 
; ... and keep doing it 

Figure X21A.15: HALF-WAVE RECTIFY program 

8. Low-pass Filter 

Here we need to form an average, each time round the loop, between the new sample and 
the previous average. We want to give old and new equal weight, so we can add and divide 
by two-or perhaps divide by two and then add. 

The general scheme is clear enough; it's the details that get sticky, as usual. Does it 
matter whether we add first, divide second, or vice versa? Should we use the 68000's divide 
instruction? 

Let's start by doing it slightly wrong, just to appreciate what's at stake (Tom did it wrong, 
first try, in the lab). We don't want to be too ludicrously wrong, though: we don't want to 
use the divide instruction-which takes 144 clocks. Instead, we can divide by two very fast 
with a shift-right operation. Here goes: 
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SUM: 
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clr.b dO 
add.b (a2), dO 
move.b dO, (a3) 
lsr.b #1, dO 
move.b dO, (a2) 

bra.s SUM 

; clear old average, for clean start 
; form sum of old & new 
; start ND for next pass 
; shift right to divide by 2 
; send it to D/A 
; ... and keep doing it 

Figure X21A.16: FAULTY low-pass filter program 

X21A- 8 

What's wrong with that? Lsr, "logical shift right," brings a zero into the MSB. Most of the 
time, that is just what we want. But what if the old average was $80, and the new value was 
$80. Their average should be $80. What is it, according to the program above? Zero. 

Well, suppose we divide the new and old values by two before summing them. Then we 
can't overflow the 8-bit register. This is a little disappointing, too, though: it loses 
information that was carried in the LSB of each value. For example, if we average $81 with 
$81 by this method, after shifting each has the value $40, and their sum is $80: close, but 
not the best we can do. 
Remedies 

We need to keep the full 8 bits of each value, sum them, and then keep the information 
that a Carry was or was not generated, as we divide by two (that is, shift right). There are 
two ways to get this result: 

• keep the sum as a word-length quantity: do an add.w between old average and new 
sample; 

• or keep just the carry information, bringing it in as MSB when shifting right 

The first method is slightly the fussier of the two. We have to be sure that the high byte of 
the sample word starts cleared; in addition, we cannot do the tidy 

add.w (a2), dO 
because this would bring in a low byte of junk (from $8003: the AID gives only 8 bits). We 
could work around both these restrictions. 

The second method is easy to implement: we need only substitute, for the logical shift, a 
similar instruction called rotate, which (in one of its forms-the one called "rotate with 
extend": ROXR) takes in the carry bit instead of a zero at one end of the register. (We are 
being slightly sloppy, and generic, calling this bit "carry:" strictly, it is what Motorola calls 
the "extend" flag, X. X sometimes differs from carry, though rarely; it does not differ in the 
present case). 

Here's the program, using ROXR: 

SUM: 
clr.b dO 
add.b (a2), dO 
move.b dO, (a3) 
roxr.b #1, dO 

move.b dO, (a2) 

bra.s SUM 

; clear old average, for clean start 
; form sum of old & new 
; start ND for next pass 
; form average by shifting right, but this time 

taking in Carry (or extend-) flag as MSB 
; send average to D/ A 

; ... and keep doing it: now "new" average"is 
old: sic transit, once again 

Figure X21A.17: Corrected LOW-PASS FILTER program 
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If you want to alter j 3dB• then you need to alter the relative weights given old and new 
samples. To do that you need to do something less crude than the divide-by-two effected by 
the shift or rotate instructions. Trouble is, operations that are less crude also are less fast. 
Let's face it: the microprocessor is not well-suited to this kind of work. It is not fast 
enough. Next time you want a single-pole low-pass, try an R and a C! 

9. Storage Scope 
Compare Text sec.ll.02 ,p. 753, 
program 11.1; exercise ll.l,p. 748 
is very similar 

You have been using fixed pointers all along: address registers used for indirect 
addressing. Here's a first chance to use a moving pointer. (If you implement this scheme in 
the lab, you also produce an entertaining gadget.) 

Because the pointer will move, we will need to check for the end of the process: check 
whether the pointer has reached the end of the table. As the lab notes suggest, there are 
several ways to do this task: 

• use a counter register, loaded initially with table length, and decremented each 
time the pointer is advanced; 

• use an address compare, asking whether the moving pointer has hit some 
predefined limit address. 

On a table read (what we call 'playback,' in the storage-scope program), the program could 
use one more alternative device to check for table end: 

• some stored value that means 'EndOITable.' 

This method is neatest of all, but doesn't work in the storage-scope application: all of the 
256 possible 8-bit combinations are needed as genuine data values. The 'EndOITable' 
method does work for a later application: Lab 23's program that drives a talker chip. That 
chip does not use all possible codes, so we are able to store $FF as the last entry in each 
table, and let the program branch out when it reads that value. 
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Now, let's write the code: 

; STORAGE SCOPE 
; here is a one time only initialization; all pointers are assumed loaded as usual (see start 

of these notes): 

movea.w #$1FFO, a5 ; set up end-of-table address marker: leaves 

; ... and here the main program loop begins 

STAR1FL: move.b (AO), dO 

STORMOR: 

move.b dO, (a3) 

movea.w #$400, a4 

move.b (a2), (a4)+ 

move.b dO, (a3) 
cmpa.w aS, a4 

blsSTORMOR 

16 bytes at top of RAM, for stack 

; clear Ready flop with a dummy input 
operation (see Lab 20-10) 

; start A/D for first pass (this time we don't 
shrug at even one bad value, since we're 
saving all samples) 

; init storepointer to tablestart 

; this advances the storing pointer after using 
it. Notice that the source pointer does not 
move: it always looks to the A/D (later 
D/A). 

; start AID for next pass 
; see if we've finished the table: subtracts end 

marker from present value of moving 
pointer; does not alter a4 or aS, but makes 
flags reflect the result. 

; carry on till moving pointer passes end 
marker 

; and here begins the Playback section. We land here after the table has been filled 

REINIT: movea.w #$400, a4 ; init storepointer to tablestart 
PLAYMOR: move.b (a4)+, (a2) ; sample from table to D/A 

RDYCHK: 

move.b dO, (a3) ; dummy start of AID: Huh? Yes, it's a fake, 

cmpa.w aS, a4 
blsPLAYMOR 

move.b (al), dO 
andi.b #$1, dO 
beq.s REINIT 
bra.s STAR1FL 

designed to make the playback rate match 
the store rate 

; see if we've finished the table 
; carry on till moving pointer passes end 

marker 
; take in ready bit, as usual 
; mask, as usual 
; if not Ready, playback again 
; ... but if ready, go fill the table anew 

Figure X21A.18: STORAGE SCOPE program (delay omitted) 

The playback rate matches the store rate, but a kink will appear in the playback as your 
program checks for Ready. This kink-lasting a handful of microseconds-is not a serious 
flaw, though, for there's another, nastier kink in the waveform that's played back: the end of 
the stored waveform will not match the start (unless you're magically-lucky). 

A practical version of this program would let you control the sampling rate: between 
storings of successive samples, call a delay routine. (Make sure you call the same routine 
on playback, of course.) Once an appreciable delay pads the samples, the kink caused by 
RDYCHK will become negligible. 
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10. A program only sketched: function-select without continual scan for key value 
This scheme, suggested in Lab 21-6 ("fancier ... ") turns out to be not very rewarding. It 

is also rather hard to understand, so if you are squeamish don't read on. If you're just 
beginning to get used used to assembly-language code, forget this last example. 

If, however, you just long to try this program, we might point out a helpful 68000 
instruction: 

jmp O(a6, d2) ; jump to address in a6 plus value of d2 
(word-size) 

Figure X21A.19: 68000's jump instruction can be steered by data in a register; that register could be loaded from the keypad 

This is a versatile form of jump: one that takes as its destination a base address (defined in 
an address register) plus an offset defined in another register: the result is that all of your 
several loops (Do-A, Do-B, Do-C ... ) can end with a common instruction that says jump to 
base plus offset-with the wrinkle that the offset has been loaded from the keypad, and 
changed from time to time. 

Base address l<,ou.h'ne 
Dfus o({5et 

$!'60 +o boA @ (j) loo;s a while". 

tt1D Do 13 ® ... +Aen 9oes lo B ... 

+ 2.0 DoC {g), .. fhfil\ sfeered to c) 
where if loo;J s a while ... 

-130 ?JolJ 7~ (JJ .•• then fu b ... 

Figure X21A.20: The several response routines, each ending with a jump to a destination determined by a value loaded from 
the keypad upon Ready 
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Here's some code to exploit this neat instruction: 

Do-A 

Do-B 

movea.w #$180, a6 

move.b (a2), (a2) 

move.b dO, (a3) 
bsrSTEERME 

jmp O(a6, d2) 

not.b (a2) 

move.b dO, (a3) 
bsrSTEERME 
jmp O(a6, d2) 

; base address for set of small programs that 
Do This, Do That. .. 

; here you do whatever the 'A' key should 
evoke 

; go check Ready flop, and change steering 
register only if Ready key is pressed 

; jump to address in a6 plus value of d2 
(word-size) 

; here you do whatever the 'B' key should 
evoke 

; jump to patch of code selected from keypad 
(keypad determines offset, value in d2) 

Figure X21A.21: Using the steered-jump 

Register d2 plus a6 must point to the start of one of the "Do-?'' program-fragments. The 
program loops in that selected fragment so long as d2's value is constant. 

Another routine, which we will call "STEERME" checks the ready key, and alters the 
value of d2 only if Ready is asserted: 

; SUBROUTINE 'STEERME': on exit, d2 holds offset to start of appropriate response 

STEERME: move.b (a1), d4 ; the usual ready check (we're omitting the 

EXIT: 

andi.b #$1, d4 
beq.s EXIT 
move.b (aO), d2 

lsl.b #4, d2 

subi.b #$90, d2 

rts 

usual 'save d4 on stack.' We don't want to 
clutter this code-and we want the code to 
run fast, as well.) 

; mask 
; if not ready, leave steering register as it was 
; but if ready, take in key value (incidentally 

clearing Ready flop) 
; this keeps only the most recent key value, 

and puts it into left nybble of byte 
; now this cuts $AO to $10, $BO to $20, and 

so on, so as to give comfortable space for 
each little response program 

; d2 now holds the chosen offset-either 
because it's unchanged (Ready key not hit) 
or because we've just changed it 

Figure X21A.22: Steerme routine, which alters steering register only if Ready key has been pressed 

This is all pretty clever-but it doesn't work very well. The whole point was to save time, 
obviating the scan of all possible key codes. But this response routine is itself pretty slow: 
the fancy jump takes an extra microsecond to compute its destination; worse, the 'call' to 
STEERME-with its stacking and unstacking-takes 66 clock cycles: more than 8 
microseconds. So, unless there are a great many key codes to scan for, the baby has exited 
with the bathwater. You could make it run a good deal faster by putting the Ready-check 
code in-line, instead of within a subroutine. But that's boring to code and write in by hand. 
Too bad: the scheme looked pretty smart! What we really need is an interrupt, and soon 
will meet that technique. 

(--Program listings follow, showing assembled code--) 
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10 TINY PGMS GLOBALS from 10 tiny pgms.Rel 

000000: 
000000: 
000000: 
000000: 
000000: 30 7C 80 00 
000004: 32 7C 80 01 
000008: 34 7C 80 02 
OOOOOC: 36 7C 80 03 
000010: 
000010: 
000010: 
000010: 16 80 
000012: 4E 71 
000014: 
000014: 10 92 
000016: 16 80 
000018: 60 FA 
OOOOlA: 
OOOOlA: 
OOOOlA: 
OOOOlA: 42 00 
OOOOlC: 
OOOOlC: 14 80 
OOOOlE: 52 00 
000020: 60 FA 
000022: 
000022: 
000022: 
000022: 
000022: 14 92 
000024: 16 80 
00002 6: 60 FA 
000028: 
000028: 
000028: 
000028: 
000028: 46 12 
00002A: 
00002A: 16 80 
00002C: 60 FA 
00002E: 
00002E: 
00002E: 
00002E: 
00002E: 
00002E: 10 12 
000030: 16 80 
000032: 6B 02 
000034: 
000034: 46 00 
000036: 
000036: 14 80 
000038: 60 F4 
00003A: 
00003A: 
00003A: 
00003A: 
00003A: 
00003A: 10 12 
00003C: 16 80 
00003E: 6B 04 
000040: 
000040: 10 3C 00 80 
000044: 
000044: 14 80 
000046: 60 F2 
000048 
000048 
000048 
000048 
000048 
000048 42 00 
00004A DO 12 
00004C 16 80 
00004E E2 10 

.Verbose 
Ch. 11: Worked Examples: Ten Tiny Programs 

init pointers 
movea.w #$8000, aD 
movea.w #$8001, a1 
movea.w #$8002, a2 
movea.w #$8003, a3 

; TESTING A/D 

point to displays (& keypad) 
point to Ready port 
point to converter data port 
point to converter start pin 

FRSTPAS move.b dO, (a3) ; start A/D, first pass 
nop time killer 

PICKUP move.b (a2), (aO) ; show A/D input value 
move.b dO, (a3) start A/D for next pass 
bra.s PICKUP 

; TESTING D/A 
clr.b dO 

SENDINC move.b dO, (a2) ; send current value to D/A 
addq.b #1, dO increment value to be sent 
bra.s SENDINC ; ... forever 

;------------------~------------
;IN & OUT 

TRANSFR move.b (a2), (a2) ; from A/D to D/A at a stroke! 
move.b dO, (a3) start A/D 
bra.s TRANSFR ... and keep doing it, forever 

; INVERT 

FLIP not.b (a2) 

move.b dO, (a3) 
bra.s FLIP 

;FULL-WAVE RECTIFY 

GETIT move.b (a2), dO 
move.b dO, (a3) 
bmi. s NOFLIP 

not.b dO 

NOFLIP move.b dO, (a2) 
bra. s GET IT 

from A/D, flipped, and back to D/A, 
still all at a stroke! 

start A/D 
... forever 

from A/D 
start A/D 
if MSB is High ... then send 
the value out at once 

but in the other case, 
... flip the sample 
either way, send it 
... and keep doing it 

;-------------------------------
; HALF-WAVE RECTIFY 

INTAKE move.b (a2), dO 
move.b dO, (a3) 
bmi. s NOFORCE 

move.b #$80, dO 

NOFORCE move.b dO, (a2) 
bra.s INTAKE 

from A/D 
start A/D 
if MSB is high, then send 
the value out at once 

but in the other case, 
... force the value to midpoint 

; either way, send it 
... and keep doing it 

;-------------------------------
; LOW-PASS FILTER 

clr .b dO 
SUM add.b (a2), dO 

move .b dO, (a3) 
roxr .b #1, dO 

clear old average, for clean start 
; form sum of old & new 

start A/D ... 
form average by shifting right, 

Figure X21A.23: Ten Tiny Programs: listing (first page of three) 
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000050: 
000050: 
000050: 14 80 
000052: 60 F6 
000054: 
OOOOS4: 
OOOOS4: 
OOOOS4: 
OOOOS4: 
OOOOS4: 
OOOOS4: 
OOOOS4: 3A 7C 1F FO 
OOOOS8: 
000058: 
OOOOS8: 
000058: 
000058: 
00005A: 
00005A: 
00005A: 
00005C: 
00005C: 
000060: 
000060: 
000062: 
000062: 
000062: 
000064: 
000066: 
000068: 
000068: 
000068: 
000068: 
000068: 
000068: 
00006C: 
00006E: 
000070: 
000072: 
000074: 
000074: 
000074: 
000076: 
00007A: 
00007C: 
00007E: 
00007E: 
00007E: 
00007E: 
00007E: 
00007E: 
00007E: 

16 80 

10 10 

38 7C 04 00 

18 D2 

16 80 
B8 CD 
63 F8 

38 7C 04 00 
14 9C 
16 80 
88 CD 
63 F8 

10 ll 
02 00 00 01 
67 EC 
60 DC 

00007E: 3C 7C 01 80 
000082: 
000082: 
000082: 42 40 
000084: 
000084: 14 92 
000086: 
000086: 16 80 
000088: 4EBA 001C 
00008C: 
00008C: 4E F6 00 00 
000090: 
000090: 
000090: 46 12 
000092: 16 80 
000094: 4EBA 0010 
000098: 
000098: 4E F6 00 00 
00009C: 
00009C: 
00009C: 
00009C: 
00009C: 
00009C: 
00009C: 16 80 
00009E: 4EBA 0006 
0000A2: 4E F6 00 00 
0000A6: 
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move.b dO, (a2) 
bra.s SUM 

STORAGE SCOPE 

but this time taking in Carry 
(or extend-) flag as MSB 

send average to D/A 
... and keep doing it .... 

Initializations (other pointers assumed initialized as at start 
of these notes, once again) 

movea.w #$1FFO, aS set up end-of-table address marker: 
leaves 16 bytes at top of RAM, 
for stack 

; ... and here the main program loop begins 
TAKEONE move.b dO, (a3) ; start A/D for first pass 

STARTFL move.b (aO), dO 

movea.w #$400, a4 

... to give A/D time to convert 

clear Ready flop 
with dummy input 

init storepointer to tablestart 

STORMOR move.b (a2), (a4) + ; pick up a sample, 

move.b dO, (a3) 
cmpa.w aS, a4 
bls STORMOR 

store it, and 
advance storing pointer 

start A/D 
see if we've finished the table ... 
carry on till moving pointer 
passes end marker 

; and here begins the Playback section. We land here after 
the table has been filled 

REINIT movea.w #$400, a4 ; init storepointer to tablestart 
PLAYMOR move.b (a4) +, (a2) ; sample from table to D/A 

move.b dO, (a3) dummy start of A/D .... 
cmpa.w aS, a4 see if we've finished the table ... 
bls PLAYMOR carry on till moving pointer 

RDYCHCK move.b (a1), dO 
andi.b #$1, dO 
beq.s REINIT 
bra.s STARTFL 

passes end marker 

take in ready bit, as usual 
mask, as usual 
if not Ready, playback again 
... but if Ready, go fill table anew 

STEERME: lets value entered from keypad determine jump destination, 
thus determining what operation program performs on input waveform 

movea.w #$180, a6 

clr.w dO 

base address for set of small 
programs that DoThis, DoThat 

startup value for Do_Offset register 

DoA move.b (a2), (a2); here you do whatever the 'A' key 

move.b dO, (a3) 
bsr STEERME 

jmp O(a6, dO) 

DoB not.b (a2) 
move.b dO, (a3) 
bsr STEERME 

jmp O(a6, dO) 

DoC 

move.b dO, (a3) 
bsr STEERME 
jmp 0(a6, dO) 

should evoke 
start A/D, as usual 
go see if need to branch anywhere 
but back to DoA 

now jump to wherever the offset directs 

this is what, say, key B should evoke 
start A/D, as usual 
go see if need to branch anywhere 
but back to DoB 

now jump to wherever the offset directs 

something else ... 

but followed in all cases 
by these same three lines of code 

now jump to wherever the offset directs 

Figure X21A.24: Ten Tiny Programs: listing (second page of three) 
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OOOOA6: 
OOOOA6: 
OOOOA6: 
OOOOA6: 
OOOOA6: 18 11 
OOOOA8: 02 04 00 01 
OOOOAC: 67 08 
OOOOAE: 
OOOOAE: 14 10 
000080: 
000080: E9 OA 
000082: 
000082: 04 02 00 90 
000086: 
000086: 
000086: 4E 75 
000088: 
000088: 
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; and here's the subroutine used by all these loops: it updates the offset 
register, if the Ready key was pressed 

STEERME move.b (al), d4 
andi.b H$1, d4 
beq.s EXIT 

move .b (aO), d2 

lsl.b i4, d2 

subi.b #$90, d2 

EXIT rts 

the usual Ready check 
mask 
if not ready, leave steering register 
as it was 

but if ready, take in key value 
incidentally clearing Ready flop) 

this keeps only the most recent key value, 
and puts it into left nybble of byte 

now this cuts $AO to $10, $80 to $20, 
and so on, so as to give comfortable 
space for each little response program 

d2 now holds the chosen offset--either 
because it's unchanged or because we've 
just changed it 

Figure X21A.25: Ten Tiny Programs: listing (third page of three) 
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Ch 11.: Worked Example: 68008-based Frequency Counter 

Problem: 12-bit counter as input device 

Show how to interlace a 12-bit counter to a 68008 controller like your 
lab computer. The counter is clocked by a signal from the outside world, 
and is to serve as an event counter or frequency counter. The computer is 
to allow the counter to accumulate counts for a while, then read it when 
the CPU chooses to. 

Assume an I/0 decoder already is wired for you as in the lab computer. 

Rules of the game: 

• Input: counter 

use 4-bit binary counters, synchronous, with jam clear 
(use a generic counter of your invention, if you like; or 
this could be a 74HC161); 
make sure the CPU takes in a count that is not a mixture 
of new and old, as it picks up 4 bits, then 8 bits; 
include hardware that allows the CPU to clear the 
counter; 
include a flag that the CPU can read to discover whether 
the counter has overflowed; 

• Program: 

write code that will take frequency counts from this 
hardware, after first checking that no overflow has 
occurred. 

+ The program should store valid counts in a data 
table lK long, beginning at $400; the 12 valid 
bits should be stored (right-justifed), with zeros 
at the 4 unused bit positions); 

+ In case of overflow, the program should store 
$FFFF in the same data table, then proceed as 
usual to look for the next count; 

+ when the table is full, the program should 
branch to a label, "QUIT" 
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This exercise is meant to remind you of the intimate relation between code and hardware: 
you will not be able to write this little program without looking at the hardware that you 
have sketched. The exercise incidentally will show again how easily the 68008 handles 
transfers larger than 8 bits. Along the way, we will need to work through some operations 
now becoming familiar: branching on a bit, and storing with a moving pointer, for example. 

The hardware details 

Here's some hardware to do the job. One point requires comment: we show the overflow 
flag driving the data bus at d7. This assignment would conflict with the second of the lab 
computer's two Ready keys, one that you wire up if you use the Register-Check routine. To 
run this frequency counter as shown you would need to assign the Register-check Ready to 
another bit position. We will keep overflow at d7 in this example so that we can illustrate a 
trick we referred to earlier: this is the quick, no-mask bit test that we referred to in the notes 
called X21A (p. X21A-6). We use the MSB or sign bit to carry information; then the sign 
flag reflects that information after a move, and no masking or other bit-testing operation is 
needed. 

For the rest of the circuit, we'lllet our little "balloon" notes take care of explanations . 

.:!_S~nchronoiA5 
{J-o.m-) clear rev;;; 
, .. 

1/t .. 

d7 

4-. d3 -do 

J~st a ;IA/se -u
sent A ere_ (no data) 

C?U pt'cfls uj> 
~._,.;-- f11'J h 4- 6/-ts 

first. /Y!tAsf hi' 
on eve10 address 
fo pl'rtnt'-f edsy 

g xg word i-ran>{er. 

d7 

4---~------------0UTt 

flop, re7t-lired, 
fv hold counter 

(~ eVIo._Dfed jdisa/Jied-.: Sfdfe 

Figure X21B.l: Frequency counter hardware 
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Figure X21B.2: Sketch of frequency-counter program 

Now let's try the code: 

?R~8U~N~~ CO~TER PROGRAM 
assur.,es hardware of exarrple X21B: 12-bit cotmte:: inpu'!: 

:n.:::allza'!:io::s 
:r.ov.c?a.l #$8002, a2 
~ovea.: #$8C03, a3 
:r.ovea.l #$8001, al 

~ovea.l #$400, a4 
movea.l #$7FF, aS 

clr.b (all 
coove.b dO, (a3) 

rrove.b #$80, (al) 
bsr.s FIX":D:)El.AY 
clr.b (al) 

move.b (all, dO 
brr.i . s BAD VAL 

move. w ( a2 ) , dO 
andi. w # $FFF, dO 
bra.s STORIT 

BAD VAL: nove. w # $FFFF, dO 

S~ORI~: move.w dO, (a4)+ 
cr1pa.l aS, a4 
bhi. s QUIT 

r:10ve.b dO, (a3) 
bra. s A.'IEW 

pain~ to counter data 
point to Clear port (counter & overflow flop) 
point to the usual Ready port (bit input); 
this is also the Counter Enable port, on output 

point to start of data table 
point to end marker (= last e~try address) 

disable counters 
clear counters and over:low flop (we 

send anything at all; we need only a pulse 
from the decoder, not a transfer of data 

start counters 
wait a fixed time (perhaps 0.1 s) 
disable cou~ters 

overflow? 
if overflow, go do the right thing 
this is the sneaky way to test a single bit: assign it in hardware 
to PSB position, then sign flag reflects its level wit~out BTST 
or mask. Perhaps a little annoying to read such queer code. 
BTST would be ~ice & explicit 

but if no overflow, pick up the sample 
... and force the too 4 bits to 0 
... and go store this sample 
if overflow: set up badvalue marker, for storage 

now store it--good sample, or warning that an overflow occurred 
now see if table is full 
if moving pointer exceeds end of table, cyJit 

otherwise, clear counter (& overflow flop, 
and go do it again 

exit from this program 

Figure X21B.3: Frequency-counter program 
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Hand Assembly: 68008 Codes 

Hand Assembly? 

At first glance, the task of "assembling" 68000 code1may look hopeless: doesn't a 16-bit 
instruction word imply 64K possible codes? And weren't assemblers developed just to take 
this horrible work off human shoulders? Yes. We don't propose that you do much 
assembling of code by hand. But we have found that for tiny programs hand assembly is 
faster than the use of an assembler. Some overhead gets in the way of assembling a very 
small program: you have to go to the computer, type in code, invoke the assembler, print. 
That takes longer than writing a 6-line program by hand. And whenever someone sits down 
in front of a computer, the person runs the risk of getting drawn in to the entertaining but 
time-gobbling game of trying small improvements, revising, revising some more. That 
process is appropriate in a programming course, but not in a course that tries to keep your 
attention close to the hardware side of your own little computer. 

So, we encourage students to assemble their first, very small programs by hand: little 
programs like the ones needed in Lab 21. The good news is that you need only a very few 
instructions to for nearly all these programs (the low-pass filter uses a couple of the slightly 
less common instructions; the other programs are extremely simple). You need move (lots 
of these), branch (conditional; especially bne and beq), and occasionally andi for the 
purpose of masking; you need subq or subtract, and you may need compare to check for 
table ends. You can get by for a while with only those instructions. 

The selective list of codes that is attached to these notes helps above all with the moves, 
the most common of the instructions. You can read the move codes directly from the table, 
if you are willing to use data registers dO and dl, and address registers aO and al. When 
you need to use another register, scan the two cases done on the table to see the pattern. 

The second page of codes shows some Boolean operations (AND and OR, etc.) and a set 
of arithmetic operations (add, subtract, -even multiply and divide, though these are hard to 
code as well as slow), and compare. These are more painful to code, but they turn out to 
share a common pattern, set forth here as the "SEA" code-Size and Effective Address. 
Some students never dare tangle with this half of the coding sheet, but we hope you will be 
braver than these people. The moves certainly are easier, but we think CLR.B dO, for 
example, would not hold you up, either. You will be able to figure out CLR ... very fast, 
once you have done two or three cases. 

If your head begins to spin as you look at this table, you can retreat to an assembler. But 
give this method a try. On the following pages you will find examples. 

1. In case the noll on of "assembly" Isn't quite clear to you, It means simply tindmg the machine code eqmvalent to the 
mnemonic: discovering that the hex code for "move.b dO, dl" is 1200. It also includes the conversion of labels. convenient 
for human readers, into addresses (absolute or relative), which the computer requires. 
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Examples: 

Moves 
If you want to find the code for move.b dl, ( aO), you need to find the intersection between 

the source column (dl, in this case) and the destination row (aO, in this case): 

68000CODES 

SMAIL SET 

"""'' ~n xxx-o -= -.... ~ 
C<ST DO D1 AO A1 (AO) (A1) ., 'f •U 

DO 1000 ,or; 1008 1010 

01 1208 1210 " 
("movea") 

3040 3049 3050 

32 1 3248 3250 3251 

1-1.. NcO VE .. R- '111. {) OJ-f--
(AO) 1088 

~ '"'i 1280 1288 1290 
-, 

(AO)+ lOCO 10C8 1000 1001 

(Al)+ 12CO 12CS 12C9 1200 1201 / 
/ 

·(AO) 1100 1108 

·(Al) 1300 1308 010 

' PUSH -(A7) 1FOO 1F01 •F<la 1F09 1F10 1F11 / 
-..: l£'5 1~11 

"" 11CO 11C1 11C8 11C9 1100 1101 --...,.;: -
Figure Ass'y.l: A move example: the code appears at the intersection of source column with destination row 

Instructions using common 'size and effective address' pattern ("SEA") 

Below the code for clr.b dl is shown. The first byte, 42, defines the operation; the second 
byte says what is to be cleared. To form the second byte, we look to the SEA table to find 
the addressing mode, here "data register direct" (abbreviated 'data dir'). The first hex 
character depends on size; we want byte size so we take the "0." The instruction concludes 
with what the table labels "#," which means simply 'register number,' in this case one. So, 
the complete code is 42 01. The second time you do this it will seem easier; the 5th time it 
will seem very straightforward. When you are comfortable with codes like this one, they 
try, say, subq, which is a little harder. Don't forget that immediate instructions must include 
immediate data; this follows the first word of instruction. For example, cmpi.b #$9, dO is 
coded as OCOO 0009. Make sense? 

INSTRUCS us1 g common•s1z & &ffecl!ve a ross• panem (" EA· on table ~w) 

IMMEDIATE 

M:MQ 7,(r X 2) data {byte) 
taX) S,(dx2) (d=data) SEA 

am 5,(dx2)+1 (d data) SEA 

ANDl 02 f£A DATA(byte) 

rn 00 f£A S1ze R:G#,COOST 
Ern OA BYTE ,_ 

~ u::N3 lie.. reg. no.) 

"" 4 4' On· data d1r I o 4 ' • 
I()T 46 An: adr d1r ~ 4 8 W'+. 
ADDI 06 {An): adr ~r"Kir 1 5 9 • 
SUBl 04 {An)+ 1 5 II 8 +. 
CMPJ oc -(An) 3 7 8 ; • 
TST 4A ,. $A8CO:abs 3 ' 7 8 8 
QR ... 

~-- Status Rag 7 
, c 

AB:l) C,(rx X~ ·'' (reg x =--d&st) ·- / - ~ \0 1 C.LR. D1 ~ 4-2 
I 

Figure Ass'y.2: CLR.B Dl: the opcode is peculiar to CLR; the rest of the instruction is made up according to a formula shared 
by many instructions (''SEA") 

The tables appear below. 



68000CODES selected ' 101/E <XXl s 

' Size: 1xxx = byte 2xxx = long wd 3xxx = word l > 
"' 

M:1IIES 

' ocu:a: OCIJCE / 

0\ "'~ 00 '< 0 
0 I 
0 Ul 

' POP: N3S IMM v 
DESTINATION ' DO D1 AO A1 (AO) (A1) (AD)+ (A1 )+ (A7)+ -(AO) -(A1) (word) (word) / DESTINATION 

Ci 
0 
0 
~ 

DO 1000 1001 1008 1009 1010 1011 1018 1019 101F 1020 1021 1038 103C DO 'J'.J 

D1 1200 1201 1208 1209 1210 1211 1218 1 21 9 121 F 1220 1221 1238 123C D1 
~ ----------- 0 

("movea") ~ 
AO (word or lw) 3040 3041 3048 3049 3050 3051 3058 3059 305F 3060 3061 3078 307C AO (word or lw) ~ 

A1(word or lw) 3240 3241 3248 3249 3250 3251 3258 3259 325F 3260 3261 3278 327C A1(word or lw) z 
-----------

(AO) 1080 1081 1088 1089 1090 1091 1098 1099 109F 10AO 10A1 1098 10BC (AO) 

(A1) 1280 1281 1288 1289 1290 1291 1298 1299 129F 12AO 12A1 1298 12BC (A1) 

(AO)+ 10CO 10C1 10C8 10C9 10DO 10D1 1008 10D9 10DF 1Cffl 10E1 10F8 10FC (AD)+ 

(A1 )+ 12CO 12C1 12C8 12C9 12DO 12D1 1208 12D9 12DF 12EO 12E1 12F8 12FC (A1)+ 

-(AO) 1100 1101 1108 1109 111 0 1111 111 8 1119 111 F 1120 11 21 113 8 113C -(AO) 

-(A 1) 1300 1 301 1308 1309 1310 1 311 1318 131 9 131F 1320 1321 1338 133C -(A1) 

PUSH: -(A7) 1FOO 1 F01 1F08 1 F09 1 F10 1 F11 1F18 1F19 1F1F 1 F20 1 F21 1 F38 1F3C PUSH: -(A7) 

ASS 11CO 11C1 11C8 11C9 11 DO 11D1 11 DB 11D9 11DF 11EO 11E1 11 F8 11FC ASS 

'J'.J ::r:: 
--3 p:> 

:;::l ::s 
0.. e > Ci "' --3 "' .... n 

0 a z cr' 

sn -< 
~ 0\ 
:;::l 

00 
0 

> 0 
z 00 

Ci (J 

=r:: 0 
0.. 

Ci 
n 
"' 0 z 

BRMCHES SPECIAL 0 
::::3 

BRA 60 spl (8bit , 
.... 
0 

BSR 61 fr m PC+ 2) I'D' 4E 71 JMP 4EF8,ad (16 bit addr ss) z 
E'£0 67 JSR 4EB8,ad 

BNE 66 RTS 4E 75 

BHI 62 RTE 4E 73 STOP E72,27C 0 

BLS 63 TRAP 4 4(trap #) 

> 
t"" sn 
~ 
--3 

BMI 69 0 
BPL 6A ~ETTRAC OR I. w #$800 , SR op 7C 80 0 lll 

t--> 
Ul 

' 



I I 
INSTf UCS using common "size affective addr s" pattern ( SEA" on 

IMMEDIAT 

M:MOQ 7,(r X 2) data (byte) 

KID 5,(dx2) (d~data) SEA 

s..ro 5,(dx2)+1 (d=data) SEA 

ANDI 02 SEA DATA(byta 

ORI 00 . 
EOOI OA . 
tffi 44 . 
~ 46 . 
ADDI 06 . ~ 
SUB I 04 . ,.., 
CMPI oc . 
TST 4A . 
CLR 42 . 
/lOCO C,(rx X2)+1, O,ry eg x • des) 

"For BYTE data, write as 00 byte 

AF fTH & LOG~ AL 
1'00 D.(rX2) + 0 if rslt to reg SEA 

1 if rslt toEA SEA 

SUl 9,(rX2) + . SEA 
/#) C,(rX2) + . SEA 

CFI 8,(rX2) + 
. SEA ~ 

CMP B,(rX2), . SEA ~ 

CMPAW B.(rX2) plus .. END (word 

ADOAW D,(rX2) plus ... NO (word 

DIVU 8,rx2 plus ... END (word 

DIVS 8, (rx2)+ 1 plus ... END (word 

MULU C,(rX2) plus .. END (word 

MULS C,(rX2)+1 plus ... END (word 

~ 
-r, 

I 

6~000 CO~ES: A~ITH~ETIC 'AND ~OGICAL I~ST~UCTIO~S=+ 
~bla below) -

SEA Size lEG #,CONS XAMPLES, US"'9 SC 

BYTE \\(ffi I..CN3 = rag. nc ) 

On: data dir 0 4 8 # SUBQ.B #1 01 53 01 

An: adr dir 0 4 8 8 + # ..a.. ADDO.B #2, DO 54 00 

(An): adr indr 1 5 g # 
,_. 

CLA.WDO 42 40 

(An)+ 1 5 9 8 + # NOT.B (AO) 46 10 

-(An) 3 7 B # MOVEO.B #$86, D1 72 86 

$ABCD: abs 3 7 B 8 NDI.W #$dcba, (aO 02 50, dcba 

Status Reg 7 c ANDI.B #2, DO 0200 0002 

SCME PARTICULAR ~STRL TOISCFI'EN .JSED 

MPA.W #$ABCD, A BlFC ABCD 

MPA.W #$ABCD, A B2FC ABCD 

CMPA.W A1, AO BOC9 

END(word) CMPA.W AO, A1 B2C8 

Moda: f£G 
On: data dir c # CMPI.B #$AB, DO ocoo OOAB 

An: adr dir c 8 +# CMPI.B #$AB, D1 OC01 OOAB 

(An): adr indr D 8 + # 

(An)+ D # ANDI.B #$AB, DO 0200 OOAB 

-(An) E 8 + # ANDI.B #$AB, 01 0201 OOAB 

$ABCD: abs F 8 

MOVEO #$AB, DO 70AB 

MOVEO #$AB, 01 71AB 

ADD.B DO, 01 D200 

Examples: ADD.B DO, 02 D400 

using SEA ADD 01, (A1) D3 51 ADD B 01, DO 0001 

ADD (A1), 03 06 51 ADD.B 01,02 0401 

CMP.B 01,02 6401 

CMP.B 02,01 6202 

> 
"' "' 
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Reading: 

Problems: 

Ch. 10: Look at programming examples in 
Chapter 10 re: indirect addressing (table copy, 
fill): program listings 10.1 (p. 682), 10.3 (p. 
688); 

Ch. 11: then look at the same topic in chapter 
11-where you are again invited to copy an 
array (ex. 11.1, p. 747). 

Then see the example of program listing 11.1. 
The first method should be intelligible; the 
second method may not be intelligible until 
you take a look at the little Motorola manual's 
description of that instruction DBF. It's a 
little obscure. 

In the detailed discussion of the signal 
averager, skim or omit most programming 
details at this time; concentrate on the 
hardware: compare the demanding AID and 
D/ A used in the averager against the 
pleasantly fast and easy chip we use in the 
present lab (AD7569). 

Embedded problems: 11.1 (BGT, suggested 
there, works; but BHI is simpler, and works 
better in the general case, with unsigned 
values like addresses); 11.5-11.7 you will find 
a relaxing reversion to combinational 
hardware; 11.8 
Postpone: 11.4, 11.15, 11.17. These treat 
interrupts, which we will discuss next time. 
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You will write the programs in today's lab. The computer will take data from an 8-bit 
AID; it will do something to that data; then it will use its results to drive a D/ A. You will be 
able see the effect of sampling-rate on the reconstructed analog signal: the D/A output will 
get 'steppy' as the sampling rate approaches the theoretical minimum of 2/period-but a 
good low-pass filter will recover the original sine, smoothing away the steps. If you are 
ambitious, you will use the phase-locked loop that you built in Lab 17 to set the filter'shdB 
automatically. 

You will also have a chance to write some keyboard-check routines that let you use 
keyboard commands to steer the program into one or another action while it is running. In 
one of these programs you will use indirect addressing in the application for which it is 
essential: filling and reading-back tables. Throughout, we encourage you to cast your 
program in the form of Main and Subroutine sections (reminders on this, below). 

We hope you will enjoy the challenge of writing these small programs. If you 
don't-and instead find yourself frustrated after a reasonable effort-then you may want to 
peek at our solutions which appear in a Worked Example called 'Ten Tiny Programs.' 
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Your programs today will be short, and can best be assembled by hand in a few minutes. 
We hope you will resist the inclination experienced computer users may feel to rush to a 
Macintosh or PC assembler: an assembler slows you down if the program is tiny. 

For hand assembly, we like the coding sheet; some people prefer to borrow patches of 
code from programs listed in earlier labs; still others seem to enjoy the agony of figuring the 
hex equivalents of the bit-by-bit code described in the Motorola manual! Take your pick. 
Soon we will relent and let you use a Macintosh assembler. 

Hardware Additions 

Today's hardware additions are very simple: 
We add an AID on the input side, aD/A on the output side. Then we put the D/A output 

through a switched-capacitor low-pass filter. 
We use just one chip to do both AID and D/A conversion. The two devices share a single 

set of eight data lines, and they are fast enough to let us use them without the wait states 
required in the text's example, the averager. 

This single-chip AID-D/A, the AD7569, shows lots of nice features. Before we look at 
the details of wiring this chip to your computer, let's pause to admire the compression of 
functions in this one chip. 

Here is the converter's block diagram: 

- -, 

'2 

Figure L21.1: AD7569 converter: block diagram 
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And here are some of the characteristics of the chip that make it appealing and easy to use: 

• Single, 5-volt supply possible; 
• Includes aD/A with some nice features: 

Register of D flops to feed it; 
Short setup time, so that it does not require slowing the CPU (by delaying 
DTACK*); 
Voltage output (rather than current, common on earlier D/A's); 

• Includes an 8-bit AID also showing some good features: 

Fast: 2 to 2.6 j.l.S; 
On-chip voltage reference 
Includes sample-and-hold (200nS to sample) 
Self-clocking (includes own RC oscillator). 

21-1 A/D-D/A Wiring Details 

Wire the AD7569 as shown below. 

I I 
I AD75b0; 

:cor» Dined ; 
I ADC./DAC. I DAC. 

GND 

Figure L21.2: AD7569: wiring details 

Some peculiarities of this circuit call for explanation: 

• We ignore the two signals that might tell the computer whether a conversion has 
been completed: INT*, and BUSY*. One might expect that the computer should 
test one of these levels, taking a sample only when the signal had reached the 
proper level (so-called "programmed" or "polled" I/0), or that the processor ought 
to take in a sample only when interrupted by the appropriately-named INT* signal. 
Such schemes are tidy, but inefficient when the converter is as fast as this one: the 
processor would take about as long to ask whether INT* was low as the AID takes 
to complete a conversion. The CPU's interrupt response is slower still. 
So, we take a simpler approach: let the processor take in a sample any 
time-recalling, as we program, that we must not try to pick up a sample within 2.6 
j.l.S of the time when we told the converter to start converting. This restriction 
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turns out to be no hardship at all; in fact, you have to try in order to violate this 
requirement. (Compare the similar choice made in the Text design: sec. 11.05, p. 
770; but their converter is slower.) 

• We hold CS* constantly low. 
CS* is only a redundant gating signal, AND'd with both Rd* and Wr*: CS* does 
nothing by itself. 

• We use OUT3** (the I/0 decoder's OUT3*, inverted) tell the converter to start: a 
falling edge does the job. It is too bad that we need to waste an instruction on this 
operation; this is one of the chip's few annoying characteristics: it would be nicer if 
a Read could properly initiate a new conversion. (You might experiment: do 
conversions work properly if you drive ST* with inverted RD* instead of inverted 
OUT3*?) 

Timing 

Here is a timing diagram forD/A and AID: 

ST (= OVTPoRT3) 

DAIA 

Figure L21.3: AD7569 timing as wired to 68008 (CS* held low) 

PROGRAMS 

Tests; In, Out; Some Processing of Input Data 

Preliminary: Pointers 
You can save yourself programming effort, and can make your programs run fast, if you 

set up address registers to point to the ports that you need: A2 might point to port 2, where 
AID input and D/A output are located. A3 might point to port 3, where the AID start signal 
is located. 

Here are codes, for example, to set up two such pointers: 
347C movea.w #$8002, A2; point to A/D, D/A data ports 
8002 
367C 
8003 

movea.w #$8003, A3 ; point to A/D start 
; port (out) 
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21-2 Testing AID and D/A 

a) Confirming that the D!A Works 

Write a program that clears a register, puts it out to the D/A, increments the register and 
puts it out again; and so on, endlessly. This program should produce a repeating waveform 
at the DIA output, ramping from zero to about 2.55 volts. 

If the ramp is not smooth, you can make some quick inferences about what's gone wrong. 
Suppose you see one of these kinky ramps: 

_ - ___ +full 
Sale 

I 

Db stuck LoW 

____ + tull
1 sc:~ e. 

D5 stuck LOW 

Figure L21.4: Defective ramps: count the kinks to infer which data line is screwy 

tvll 
sc~le 

You can at least tell what is the highest-order D/A data line that's not driven properly or 
misbehaving on the DIA: 1 kink (at midpoint of range) ====>MSB is bad; 2 kinks (at 1/4 and 
314 of range) ==> d6 is bad; and so on. This sort of information gives you a clue to what 
lines you should probe as you troubleshoot. It may not reveal subtler points, such as 
whether the line is stuck high or low or floating (floats cause the strangest waveforms). 

b) Confirming that the AID Works 

Write a program that takes a value from the A/D, shows it on the data displays, then 
does this all again, endlessly. Feed the AID with a DC level, from the 1k or 10k 
potentiometer on the breadboard : 

<-5 

1ok L ___ to co"veder 
or ltss 1-

Figure L21.5: DC NO test input 

Think about the A/D's timing requirements: make sure you leave at least 2.6 !-!S between 
the falling edge of ST* ( = OUT3**) and the assertion of RD* (the AID doesn't like to be 
asked for data before it is ready). Arrange things so that you tell the converter to Start at a 
time when some necessary operations will occur before the next Read, so that you don't 
need to kill time with do-nothing instructions. 

On the timing diagram below, show when the several control signals occur, and 
determine whether sufficient time elapses between the start of conversion and your 
program's Read of the AID output. Count clocks: the Start* edge occurs one clock into the 
cycle on which OUT3* occurs (and this is 8 clocks after the start of the instruction: 8 clocks 
are required for the instruction fetch); the Read* begins at a similar place in the IN2* 
instruction. 
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Consult the MC68008 Instruction Execution Times, at the end of the set of digital data 
sheets, for the number of clocks needed for each instruction of your program. 

ST* (=OUT3**) 
RD* (= IN2*) 
WR* (=OUT2*) 
DATA 

Instruction: Move.b Dx,(A3) 
Clocks: 12 

Figure L21.6: AD7569 timing as driven by your program 

Leave yourself 2 NOPs after the IN, OUT instruction(s), for you will shortly complicate 
the program a little. 

Incidentally, it is good practice, when assembling by hand, to scatter pairs ~! NOPs 
through your programs. These NOPs can save you lots of rewriting time: if you need to 
add something later, you can branch out to a patch program, then branch back (2 bytes will 
allow a Branch). 

21-2 In & Out 
Write a program that will take in a single byte from the A/D, then put it out at once to the 

D/A. This exercise sounds exceedingly dull, but it isn't. In fact, this simple scheme 
provides a good setup for watching the effect of sampling rate, a topic we mentioned but did 
not demonstrate in Lab 17. 

Effect of Sampling Rate 
Gradually increase the frequency of an input sine wave, and compare the number of 

samples needed to make the reproduction a recognizable sine against Nyquist's theoretical 
minimum: at least two samples per period. As your sampling gets sparse, the 'steppiness' 
of the waveform gets extreme. In a few minutes we will add a low-pass filter at the output 
of your D/A, to make the steppy waveform prettier. But before we do that, let's get an 
impression of the effects of sampling rate. 

See if you can find the effect called aliasing, by driving the converter with a sine at a 
frequency above the maximum it can convert. 

Aliasing is sometimes difficult to spot on the scope, but it is very easy to hear. In order 
to listen for the aliased signal, you will need to make two changes: 
1) Add a push-pull driver to link your D/A output to a speaker (see Lab 8-8, but attenuate 
and AC-couple the input; or use an even easier alternative: if you have an LM386 driver 
chip, you can use it to drive a speaker, with +5V only. Follow National Semiconductor's 
application note that appears on its data sheet for the '386. Be sure to include decoupling 
capacitors on the supply). 
2) Reduce your program's sampling rate by inserting a call to Lab 20's delay routine, 
within the program loop. You will need to plant a small delay value in that routine-less 
than a millisecond, whereas the value used in Lab 20-5 and 20-6 produced a delay of 100's 
of milliseconds. 

21-3 Low-pass filter; PLL control 
Here's a chance to make Nyquist's surprising claim believable, by cleaning up the D/A's 

steppy output. If you're feeling energetic, you also now have a chance to put to work the 
phase-locked loop you built in Lab 17. We will begin by filtering the D/ A output without 
the use of the PLL; you can then add the PLL if you like. 
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21-3-1 Applying the filter to D/A output 

Find the MF4 low-pass filter that you built back in Lab 11. Use a second external function 
generator to clock the filter. 

tvnd,on JUl ~s 
generator 

10k 

Figure L21.7: D/A driving filter 

To use your filter, you will have to slow down your computer's sampling rate a great 
deal: the filter's topf3dB is under 10kHz, whereas your computer and AID-D/A can handle 
much higher frequencies. (How much higher? How long does your program take to bring 
in a sample and put one out again?) You can slow your program with any of the delay 
routines suggested in Lab 20; the easiest scheme is surely just to use the delay already in 
place, as we suggested above in 21-2. The most fun scheme, however, would allow you to 
alter the sampling rate from the keypad (see appendix to Lab 20: delay, version 3). Take 
your pick; but don't spend your afternoon on the delay routine! 

When you have brought the sampling rate down to a few kHz, apply the D/A output to 
the filter input, and watch the filtered and unfiltered D/ A output on the scope. See how 
close you can come to 2 samples/period while retaining a coherent sine out of the filter. 
Does your output filter solve the aliasing problem? 

Anti-aliasing filter (optional, again: this is for perfectionists) 

A complete AID-D/A circuit would include an anti-aliasing filter. It is easy to provide 
such a circuit here: add an MF4 ahead of the AID input, clocked with the same signal that 
clocks the output MF4. 

M1=4- based 
anh"-olr<s 

lowpa•s +il +er 

CO"'r>IDn deck: +nchn~ cutoff -\'n>~uenc\es 

Figure L21.8: MF4 filter again: this time used as anti-aliasing filter 

This filter, properly clocked (that's up to you), should keep out most of the signals that 
are too high to handle at a given sampling rate. You should now find that aliased signals 
appear briefly, at rather low amplitude as you move just past the minimum adequate 
sampling rate (Nyquist's); then the aliased output should disappear altogether at frequencies 
substantially higher. 
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Footnote: the anti-aliasing filter, you may recall from Lab 12, can alias! (It does if fin 
exceeds 0.5fciock!) Strictly, therefore, one should precede the MF4 with a conventional 
low-pass (one that does not sample). We'll skip this refinement. Things are complicated 
enough, and about to get more complicated with the resurrection of your phase-locked loop! 

21-3-2 Using Phase-Locked Loop to adjustf3dB to sampling rate (optional: skip if you 
feel pressed for time) 

Now here's the grand scheme that lets us put the PLL to work. Find the PLL that you 
built in Lab 17. Add a flip-flop to feed the signal input of its phase detector (the sample 
pulses that come out of the' 138 l/0 decoder are too narrow to work satisfactorily): 

UU1J 
~ 
( fn:,., '138) 

ptn f2 

R 
11 

7~ HC 4040 
Crtpple c:fr) 

Figure L21.9: Lab 18 PLL: flip-flop added to input, to provide square wave to phase detector 

fo Mi=-4 
cltd; 

( 1'-x 
~ample) 

Use the output of the VCO to drive the clock terminal of the MF4 (remove the line that has 
been driving that terminal until now, of course). Now see if the filter can follow your 
computer as the computer varies the sampling rate and thus the input frequency range that 
the AID converter can handle. 

Back to the main stream: 

21-4 Invert; Rectify: Half-Wave and Full 

a. Invert 

Replace the simple In & Out instruction with one that will put out an inverted version of 
the signal that comes in from the A/D. (Do you want NEG or NOT?: 2's comp or l's comp 
inversion? Consider how you want a value of zero treated.) 
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b. Rectify 

1- Half-Wave 

Let a sine input generate a 1/2-wave rectified output (rectified about the midpoint of 
the voltage range of AID and D/A; that range, in case you care, is 0 to about 2.55 v.). 

2.55 v 

1.<7v 

ov 
Figure L21.10: Half-Wave rectified output (about midpoint) 

Suggestions: 

• Your program should branch on the MSB of the input. The "sign" flag (called M1 
or PL in the conditional instructions) reflects this bit: MI <==> MSB high; PL 
<==> MSB low. 

• Note that when you want to simulate "zero out" you should force the output not to 
a digital zero but to the midpoint of the output range. 

2- Full-Wave 

Let a sine input generate a full-wave rectified output: 

21-5 Filter: Low-Pass 

z.ssv/VVV 
1.2'7v 

ov 

Figure L21.11: Full-wave rectified output (about midpoint) 

It turns out to be very easy to write a program to simulate a low-pass filter: let it 
average the current sample with the previous average, and output the result. (Give the most 
recent sample a weight equal to the previous average). 

Test your routine by feeding it a square wave of low frequency (100Hz or lower). Does 
the shape look roughly like 

(amplitude-in) • (1-e-<t!Rcl)? 

If you're not sure: does it climb fast at first, then slowly? Does the waveform travel in 
each step just halfway to its destination (about like Xeno's hare)? The answer to all these 
questions should be Yes. 

Test the circuit's treatment of a sine wave. Do you find the usual low-pass filter phase
shift effects? (You will see a constant delay; this is an artifact of the digital processing, 
different from the phase shift that characterizes the analog low-pass filter.) 
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Here are two codes you may find helpful: 
E20[8 + x] LSR.B #1, Dx 

; ("x" =register number); (E3 ... for shift left) 
; shifts register Dx right by 1 bit; brings 0 into MSB, 
; puts old LSB into Carry and Extend flags 

E21[x] ROXR.B #1, Dx 
; rotates right, bringing in Cy or Extend 
; flag as MSB 

Sample coding: 

Wrinkles 

E209 
E308 
E211 

= LSR.B #1, D1 
= LSL.B #1, DO 
= ROXR.B #1 D1 

L21-10 

How could you change the frequency-response of your filter-the filter's f3dB? A 
clumsy way: slow the program with a delay loop, so as to slow the averaging process. This 
produces a steppy output. Can you invent another way? 

Next time you will have a chance to use programs you have written today, if you choose 
to improve your signal processor by allowing keyboard control. And you will have at least 
two more chances to use the A/D, DIA that you have installed today. Your machine now 
has grown as far as it must. From here on, it will be up to you to choose and devise 
hardware improvements, and to write the code that lets your little machine do something 
you find rewarding. 



Class 22: J.!S:: Interrupts & Other 'Exceptions' 

Topics: 

• old: 

• new: 

Pointers to read and fill tables 

AID, D/A hardware 

Exceptions: 
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A peculiar Motorola term, encompassing software and hardware events 
that can break into normal program execution 

Interrupt hardware 
Alternative schemes: autovectored versus fully-vectored 

Old 

1. Pointers to read andfill tables 

We talked about ways to copy a table from one location in memory to another, last time; 
the Text shows two methods, in program 11.1. 

The main choices here concern how to check for table's end. So far, we've seen two: use 
a counter register, and do an address compare. What's to be said in favor of each? 

If you use address compare, what flags/conditions should your program look at? 

For example, after 

cmpa.l #$1FOO, a1 ; al is moving pointer, $1FOO is end 
marker 

Should you use BNE? BLS? BLT? Does it matter? (Yes!) 

2. Hardware: AID, D!A; Integrated Version (Lab 21) 

Should you wire the chip so that the computer checks the signal that says 'Conversion 
Done'? No. Remember why? Should you use an interrupt? No. Today you will begin to 
understand better why not, and also when one might be useful. 

New: 

Why interrupts? 

You will meet some cases where interrupts would be useful, in Lab 22: both the 'storage 
scope' and 'function select' programs could benefit. And here is a simpler case, taken from 
back in Chapter 10: a keyboard input: 
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"poL-LING" 

(SIMPLEST) 

. R 

"PoLLIN~ 
(WITH FLOP} 

N22-2 

~<>'"P' 
TNTE7</l..VPT 

ACKNOWLI'; Drrt' 

INTE l<!Wl'T 

Figure N22.1: Keyboard input: how should the buffer tell the computer that it has a character ready? 

We have discussed the method called polling: the processor asks, from time to time, 
'character ready?' That method can be inefficient, or worse: the processor could be too 
slow, and could miss a character; the human could be too slow, and oblige the machine to 
ask, over and over, 'Ready?,' 'Ready?'-before getting anything new. Interrupts solve both 
problems. 

Let's generalize what we have just described for the keyboard: the conditions that call for 
interrupts: 

a peripheral needs quick attention 
An melodramatic example is a power-failure sensor: it 
wants to warn the computer that the sky is falling, so the 
computer can save some information while it still is able to. 
A more typical case, because it requires much faster 
response, is a disk or tape drive that needs to load or unload 
data-in quick, periodic bursts: e.g., IBM PC hard drive. 

a peripheral needs infrequent attention 
Extreme example: a "real time clock" that wants to say, 
'It's a new day. Update your calendar.' It would be a 
shame to ask the computer to poll the calendar continually. 

In these notes we will speak, first, of the general category that Motorola calls 
"exceptions;" then we will concentrate on the most important member of this category, the 
interrupt. 

68000 "Exception Processing" 

The 68000 treats interrupts as one of a class of many "exceptional" conditions that call 
for a specialized response. 

Some of the exceptions are software events: 

• "illegal" instructions (more on this, below); 
• an attempt to divide by zero; 
• a "trap" instruction-an instruction that deliberately invokes exception-processing 

(compare the IBM PC's 'software interrupt' discussed in Text sec. 10.11, p. 701). 
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• "trace:" a facility designed to ease debugging: the processor behaves as if it had 
interrupted itself, after each instruction (this we use in the Register Check routine, 
included in this Manual) 

Other exceptions are hardware events, signaled to the processor by assertion of one or 
more of its input pins: 

• reset (this you have been using, of course); 
• bus error (device fails to respond); 
• interrupt. 

The chip responds to all of these "exceptions" in a standard way: 

• the processor saves minimal information that will let it resume what it was doing, 
when it has finished responding to the exception: 

Then-

on the stack, it saves a copy of-

+ the program counter; and 
+ the "status register," which includes the flags. 

the processor looks to a particular address low in memory, to find the 
address where it ought to begin executing an exception-response routine or 
program. 
at the end of the response routine, the processor executes a RTE 
instruction (return from exception); RTE pops the old PC and SR values 
from the stack, restoring them to the PC and SR registers, thus allowing 
the machine to resume execution of the program that the exception broke 
into. 

Lab 22 includes a diagram (fig. L22.4) spelling out this standard response to an 
exception. The process is a bit convoluted; it may help to take a look at that figure. 

B. A Hardware Exception: Interrupt 

An Interrupt, the most important of hardware 'exceptions,' evokes a response almost 
identical to what you saw for illegal. The important difference is simply that an interrupt is 
initiated not by a software event, but by the pulling of a pin (1 or more): an interrupt pin, 
called IPL2/0 or IPLl on the 68008. 

The interesting difficulty-as for the software event-is how to steer the processor to the 
appropriate response. Pulling a pin cannot, in itself, tell the processor where it ought to 
branch in order to respond appropriately. Microprocessor designers use two methods to 
solve this problem: 
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How the processor finds the interrupt response routine 

Two alternative methods: 

autovector the processor automatically looks to a particular location 
(in the 'vector table'-low memory) and loads the 32-bit 
value there into its program counter. Thus it does an 
indirect jump. This is identical to the response to a 
software exception (except for the effect on the interrupt 
mask; we'll reach this topic in a moment). 

(fully-) vectored the processor reads a value from the data bus (the value is 
fed by the interrupting device), and uses that value to steer 
it to the address of the response routine; in the 68000/8 the 
value read from the data bus (8 bits) steers the processor to 
an entry in the vector table; so, this vectored jump might be 
called double-indirect. 

In Lab 22 we suggest that you use the simpler of these two schemes, autovector. Fully 
vectored interrupts are a little faster, and permit the use of more interrupting devices. 

Hardware to Implement Interrnpts 

Autovector Hardware 

Here is the Text's example of hardware to implement autovectored interrupts with the 
68008. The scheme is similar to the one we use in the lab. 

intl!rrupt f1nes 

(with pul/up) 

N.C. 

K:>---qiPL2)0 
b--~I?L1 

Figure N22.2: Autovectored interrupts 

The '148, shown above, is a priority encoder-a chip that puts out the ("encoded-") binary 
number of the highest-numbered of its inputs that is asserted. So, if one asserts input 2, the 
chip puts out 010. (In the lab, we omit this chip, because we have only one interrupting 
device). 
The 68008 uses more than one interrupt pin so as to let it determine priority among 
interrupts, on chip1. (Most earlier processors-but not all (see, e.g., Intel's 8085)-used 
just one interrupt pin.) Asserting the VPA pin tells the processor to use this autovector 
response. 

We will return, in a minute, to the question how the processor implements this priority 
scheme. 

1. Two pins, of the three available on the 68000, are tied together internally (IPLo* and IPL2*) to save pins, so the 68008 
provides three interrupt "levels": 2, 5 and 7, rather than the 6 provided by the 68000 (level zero, for both processors simply 
means no interrupt). 
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Vectored Interrupt 

Here, in contrast, is hardware to implement a vectored scheme: 

(from f possible 
t'n ferru.pt

re..~uest sourus) 

Questions: 

{act fhat ~ device 
to t'n terrupt 

1NrA 

·. }' .. llckno"-.!/er/Ji"J 
b.Z irderrupt, U'U reads 
b1 a hyfe from data 
D¢ /)us t-o dr'srouer wht'ch 

L___---.d:.I-"'5&..... ((otAfine) fv use •••• 

d d fa hu.s CMrt'es fhe 
of f-he /,terru(>fifiJ 

[one o( erjhf). 

Figure N22.3: Vectored interrupt 
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• How does this hardware implement prioritization-while using just one of the 
CPU's IPL* pins? (Nothing subtle, here.) 

• Why is the '574 (octal D register) included? (This is a harder question; one posed 
in the Text.) 

Priority among interrupts 

The 68008, with its multiple interrupt pins, can be programmed to allow interrupts of 
high urgency (or "priority"), while ignoring interrupts of lower urgency. In addition, when 
it responds to an interrupt, the processor automatically makes itself ignore interrupts of the 
same priority or lower. That makes sense: finish the urgent job first. (The highest priority, 
7, does not work this way: it is usually called non-maskable (NMI); so, level 7 can interrupt 
level 7.) 

How does the processor implement this priority scheme? The methods turns out to be 
straightforward: the processor uses a 3-bit mask in one of its registers (the "Status 
Register") to define the level of interrupt that will be allowed to break in. 
Interrupt Mask 

SntTU5 REIJ-!STI5P. 

Figure N22.4: Interrupt mask, in Status Register 

The programmer sets these 3 bits as he or she chooses, just as one sets the contents of any 
other register. The default value-to which the mask is set on Reset-is 1. as one might 
expect: no interrupts are permitted, except NMI. 

Here is a homelier image of what the mask does: it's a sort of adjustable fence; behind it 
sits the CPU, trying to get some work done. To keep the neighborhood safe, however, he 
needs to pay attention to neighborhood creatures (maybe he has to feed them?). He adjusts 
the fence according to how busy he is: 
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fat'r-ly -husy 
CPU 

/ 7 

Figure N22.5: CPU's interrupt mask: adjustable to keep out small dogs, allow in tall dogs 

N22-6 

When an interrupt occurs, the interrupt mask is saved on the stack (as part of the SR, in 
the normal exception response procedure). Then the mask in use is raised to the level of the 
present interrupt. On exit from the exception response, the popping of the old SR 
automatically restores the old mask level. 

Autovector hardware again: Variation on Text's Hardware: Lab 22 Flop 

Figure N22.6: Interrupt hardware: generates a single interrupt request on closing of a switch 

Probably you recognize this use of the edge-triggered flop as similar to the trick used on 
Lab 20's Ready key. Again the motive is to make sure that the processor can clear the 
request as soon as it begins to service it. This is not always necessary. The Text examples 
omit this feature, assuming that the request will not persist after the response is completed. 
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A debugging aid: Register-Check: two versions 

Two versions of register-check: Baby Check and Register Check 

These two programs can help you debug a program. But you should feel free to ignore 
these notes, if you like. If you are feeling pressed for time and extremely eager to get on 
with your own programming, rush on; don't feel obliged even to read this handout! 

Baby Check is a primitive version, Register Check a fancier version, but they do 
essentially the same thing: they allow you to discover the values of all the CPU registers, at 
any point in your program. 

Baby Check is very easy to enter: it's a three-line program; Register Check takes perhaps 
half an hour to enter and check: it's about 100 lines long. It also requires that you wire the 
second of the two Ready keys shown in the circuit Big Picture. 

Register Check can reward you for the harder work, however: this longer program lets 
you discover register values while the program runs, using the keypad: type D2 to discover 
the word-length value of D2; type A 7 to get the value of the stack pointer; and so on. It lets 
you do this as you move through a program as slowly as you like, one instruction at a time. 

Baby Check, in contrast, lets you discover register values by taking the bus and walking 
through the stack, looking at the stored values. You'll need a pencil and paper to help you 
keep track of what register you're looking at. 

BABY CHECK: Poor Man's (or woman's) version of Register-Check 

The fancy register-check routine works by pushing the contents of all registers onto the 
stack, then letting you inspect those stored stack values by pressing particular keys on the 
keypad. 

The simple register-check routine suggested below also pushes all registers onto the 
stack. It then, however, stops. You inspect those values by taking the bus and looking at the 
stored values. Before quitting, the program puts out the address of the stack pointer on the 
displays, to tell you where to begin looking for the stored values. 

To invoke this Baby Check routine, you should plant a breakpoint somewhere in the 
program that you are checking; that breakpoint is a TRAP instruction~ne of the software 
exceptions: 

'Breakpoint' command 
BKPT: 4E40 ; TRAP 0 

Vector 

As for all other exceptions, this Trap stores the return address (next instruction) on the stack, 
then looks to the vector table for the Trap_O vector, a 32-bit address stored at location $80. 

So, if your Baby Check routine sits at $300, you plant that address in the vector table: 

Vector Table: 

address 

$80 

stored 'vector' 

00 00 03 00 ; TRAP 0 vector: start address of 
your response routine 
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Routine: 

Baby Check: 

31CE 
8000 

48A7 
FFFF 
4E72 
2700 

A debugging aid: Register-Check RGCHK.-2 

move.w a7, $8000 ; show stack pointer on displays 

movem.w d0-d7/a0-a7, -(a7) ; push all registers onto stack 

stop ; that's all, folks! 

Figure RGCHK.l: Baby Check listing (tiny!) 

If you go and inspect the stack, you will find that it holds, first, the address where the 
breakpoint occurred, then the status register, and then the 16 stored registers, in the order 
shown below: 

STACKED VALUES 

Stiick 

r~ 
--

PC 
aft._, --
8/fPT 
SR 

~--

) A7< <f --s 
A6 < --

6 
A5< --

~ 

A'f<. --
2 

A3< --
F~ 

A2< --
£E 

Al< --c 
A¢'< --

4 
D7( --

3 
06< --

' D>< --
Lf 

04< --
2 

D3 < E¢ --
DZ < --

DE 

P1 < --
c 

D¢ < --
A 

Figure RGCHK.2: The stack after Baby Check does its job; assumes stack not in use when Baby Check invoked 
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The fancier REGISTER CHECK 

Preliminary: should you take time to install this fancier debug routine in your machine? 

Maybe not. Entering it and debugging it will probably take a half hour or so. Until now 
we have studiously avoided asking you to type in a heap of code that is hard to understand, 
because that's depressing work. 

Two arguments run in favor of entering this Register-Check routine: 

First, if you are about to undertake a project that requires a program longer than 
those we have put in so far, you may be grateful for a debugging aid; 
Second, this routine will give you a taste of a facility normally available to an 
assembly-language programmer. 

Software Single-Step, & Breakpoint 

The debugging aid described here is a supplement to the dtack*-blocking single-step 
function built into your computer. That hardware stepper is good for checking hardware, 
and adequate to let you watch programs in slow motion. The software single-step described 
here gives you additional information about the operation of a program in action: it lets you 
watch the program's effect on all the CPU's registers. 

The 68000 provides a "Trace" mode of operation for just this purpose, and we will take 
advantage of that mode. We will also suggest a way to plant a "breakpoint" instruction that 
invokes the register-check routine only when the program hits the breakpoint. 

TRACE 

We tell the processor to Trace by setting a single bit in the "Status Register" ("SR"): we 
set the Trace bit by OR'ing in a 1 at that bit position in the SR. 

So, to turn on Trace function, insert, just before the section of program that you want to 
trace, the following instruction: 

00 7C 80 00 ORI.W #$80 00, SR 

As it excutes the Trace exception, the processor saves the program counter and status 
register, just as it does in response to any other exception (see Lab 22, if you have forgotten 
this pattern; fig. L22.4). It looks to the exception vector stored at 24H; there it picks up the 
start address of the routine that responds to the Trace exception: here, that response is our 
Reg-check routine. 

Incidentally, the processor prudently turns off the Trace function while executing a Trace 
(a good idea!) Exiting the Reg-Check routine, the processor turns on the Trace bit once 
again, and resumes execution of the program being Traced, at the next instruction. So, the 
processor interrupts itself after executing a single instruction and lets us inspect its registers. 

Neat? 
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You will need to load the Trace vector with the starting address of your response routine 
(which will be the longer Register-Check program): 

Vector Table: 
address stored 'vector' 

$24 00 00 03 00 ; 1RACE vector: start address of your response 
routine 

Figure RGCHK.3: Trace Vector 

Register-Check Routine 

How Reg-Check Behaves 

The Register-Check routine shows, on the Data Displays, the 16-bit value of any of the 
processor's registers; the user selects which register by typing, for example "D3" on the 
keypad: this evokes the contents of register D3. 

You can look at as many registers as you like, or as few. When you want to resume 
execution--<:arrying out the next instruction in the program you are Tracing-you hit the 
keypad's INC key. The processor executes one more instruction, and again shows you 
register contents. 

The routine will continue to Trace, until you break in to clear the Trace bit. To stop 
tracing, you must take the bus and change the Reset vector so as to start execution just after 
the instruction that turns On Trace. (Reset turns Trace off.) 

How Reg-Check Does What it Does 

The routine first saves all registers on the stack-including the stack pointer, a7. It then 
fixes the stored value of a7, adding a constant to restore a7 to the value it held before the 
Trace exception began. (It also keeps a copy of the modified a7, which will be needed on 
exit from Reg-Check.) 

Then the program looks at the keypad to find out which register the user would like to see 
revealed on the data display. It checks the high nybble to find whether the user asks for A 
(address), D (data), F (flags & the rest of the Status Register). Any other key evokes the 
Program Counter (PC). The routine uses the low nybble coming in from the keypad to 
point to a particular one of the registers, if Data or Address registers are requested. 

To watch the progress of a program, press the C key (or almost any other, as noted above) 
the data displays will show the PC. Hit INC on the keypad; incidentally, this is the key used 
for hardware single-step, as well. 1 

The program counter will advance, one instruction at a time; when you get to a point here 
you are curious to check register values, evoke the values of the registers that interest you, 
using the other keypad values. 

1. A wrinkle, in case you use the hardware single-step to debug the Reg-Check routine: because both hardware and software 
single-steps use the same Adr-Clk signal, note that Reg-Check will always find its Ready flop in the high state--clocked by 
the hardware-single-step's use of Adr-Clk. 
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Hardware 
To run the Reg-Check routine, you need to wire up a second "Ready" signal, just like the 

one you installed in Lab Micro-2, except that this one uses a flip-flop clocked by the 
keypad's Adr-Clk signal rather than the keypad's Kwr*. 

R F.ADY FLAGS 

DATA BUS 

Figure RGCHK.4: Second "Ready" key 

We ask you to install this second Ready for two reasons: 

This second Ready allows you to debug a program that uses the other Ready key; 

Use of Adr-Clk to clock this Ready flop lets you step rapidly through a program, 
taking advantage of the keypad's Repeat function. 

Breakpoint 

Instead of Tracing every instruction, you can plant a Trap instruction in your program, so 
as to let the program run full-speed up to the Trap instruction; the Trap then can invoke 
Reg-Check just once. 

Such a breakpoint is useful in two ways: 

• It lets you determine whether the processor ever reaches that particular point in the 
program; 

• it lets you inspect register values at a point where they particularly interest you. 
(For example, you might check a value input from the ND, to see whether it seems 
to vary on successive passes through the program, reflecting changes in the analog 
input.) 

The code and vector you need for a breakpoint ("TRAP 0," in the microprocessor's own 
terms) are shown above under Baby Check. A listing of the full Register-Check program 
appears below. 
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REGCHECK 6/89_GLOBALS from regcheck 6/89.Rel 

000000: 
000000: 
000000: 
000000: 
CCOOOO: 
088000: 
000000: 
OOOOCO: 
OOOOJO: 
CCOOOO: 
000000: 
000000: 
OOCOOO: 
000000: 
000000: 
000000: 
000000: 
000000: 
000000: 
000000: 
000000: 
000000: 
000000: 
000000: 
000000: 
000000: 
OCCOOO: 
000000: 
000000: 
000000: 
000000: 
000000: 
000000: 
000004: 
000004: 
000006: 
000008: 
OOOOOA: 
OOOOOA: 
OOOOOA: 
OOOOOA: 
OOOOOA: 
OOOOOE: 
000012: 
000016: 
000016: 
000016: 
00001A: 
00001A: 
00001A: 
00001E: 
00001E: 
00001E: 
00001E: 
000020: 
000020: 
000020: 
000022: 
000022: 
000022: 
000024: 
000024: 
000024: 
000028: 
000028: 
00002A: 
00002A: 
00002A: 
00002E: 
00002E: 

48 A7 FF FF 

2C 4F 
26 4F 
42 40 

30 7C 80 00 
32 7C 80 01 
34 7C 80 03 

06 FC CO 26 

3:0 4B 00 lS 

10 12 

10 10 

12 00 

02 00 00 OF 

E3 08 

02 01 00 FO 

.verbose 

. ListToFile 
REGCHECK 7/16/89 
This routine evokes any of registers plus PC & SR, 
using keypad. 
Ax evokes contents of that address register 
Dx gets that data reg 
Fx gets flags ("status register") 
anything else gets program counter 
Values limited to word-size, to fit displays 

As written, expects to be reached through 
an exception vector; PC & CR evocation 
depend on that assumption. 

To invoke this as response to TRACE, 
turn on Trace by oring 8000H with SR, 

in pgm to be traced 

register use: ao points to Kbd & Dsply 
al points to Rdy port 
a2 points to Clear port 

dO holds offset from key, 
to pick value from tbl 

dl holds high nybble, to 
determine Adr/Data/Other 

a3 temporary copies of stack ptr 
a6 

main movem.w d0-d7/a0-a7,-(a7) ; push D and A regs 
onto syst stack 

movea.l a7,a6 
movea.l a7,a3 
clr.w dO 

movea.w #$8000, aO 
movea.w #$8001, al 
movea.w #$8003, a2 

adda.w #38,a3 

move.w a3, 30(a7) 

move.b (a2), dO 

get move.b (aO), dO 

move.b dO,dl 

andi.b #$0f,d0 

lsl.b #l,dO 

andi.b #$f0,dl 

temp copies of stack pointer 
so we can mess up original 

clear top byte of register 
later used as index & later 
fixed only in low byte 

point to keypad & dsply 
point to Readyport 
point to Clearport 

this should amend copy of SP 
to value it held before 
exception began 
this overwrites stored 
a7 (=SP) with value it had 
before the exception 

clear Ready flop: dummy 
input, uses I/0 decoder 
to clear Ad-Clk Rdy flop 

; get keyvalue, to dtrmn 
which of saved regs to show 

and save a copy, to work 
on, dscvrx high nybble 

mask to get reg # 
(low nybble) 

dbl the low-nybble bee 
two bytes/reg 

Now look at high nybble: 
mask to dtrmn whether 
data, address or control 

Figure RGCHK.S: Register-check program listing: first page of two 
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oc 01 00 DO 
67 12 

oc 01 00 AO 
67 08 

oc 01 00 FO 
67 oc 

60 10 

00 00 00 10 

00002E: 
00002E: 
000032: 
000034: 
000034: 
000034: 
000038: 
00003A: 
00003A: 
00003E: 
000040: 
000040: 
000040: 
000042: 
000042: 
000046: 
000046: 
000046: 
000046: 
00004A: 
00004A: 
00004A: 
00004A: 
00004A: 
00004A: 
00004A: 
00004C: 
00004C: 
00004C: 
000050: 
000052: 
000052: 
000056: 
000056: 
000056: 
000056: 
00005A: 
00005C: 
00005C: 
00005C: 
00005C: 
00005C: 
00005C: 
00005E: 
000062: 
000062: 
000066: 
000068: 
000068: 
000068: 

30 B7 00 00 

60 OA 

30 AF 00 20 
60 04 

30 AF 00 24 

08 11 00 07 
67 C4 

10 12 
3F 4E 00 1E 

4C 9F FF FF 
4E 73 
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cmpi.b lt$d0,d1 
beq. s rejoin 

cmpi.b #$aO,d1 
beq.s afix 

cmpi.b #$fO,d1 
beq.s flags 

bra. s catchall 

a fix ori.b #$10,d0 

(PC or SR) 
D? 
if so, go use reg. # to form 
pointer 

A? 
if so, go fix up reg-# pointer 

F? 
if so, fix pointer to get at 
status reg 

show PC 

; for an A reg, need to offset 
by 16 to get past data regs 

rejoin move.w O(a7,d0), (aO) ; this uses low nybble X 2 

bra. s check 

(+ 16 if an adrs reg) 
as index added to stack 
ptr, to get register 
contents (2 bytes) & 
send them to display 

see if Rdy (back to 
traced pgm?) 

flags move.w 32 (a7), (a0) ; display saved status reg 
bra.s check see if Rdy 

catchall move.w 36(a7), (aO) 

check: btst.b #7, (a1) 
beq.s get 

resume: move.b (a2), dO 
move.w a6, 30 (a7) 

movem.w (a7) +, d0-d7/a0-a7 
rte 

; show pre-exception PC, if 
nothing else requested from 
keypad 

see if Rdy key hit 
if not Rdy, go look again at 
keyvalue 

But if Rdy, back to main pgm; 
terminate register dsply 

; clr Rdy flop (dummy input) 
restore a7's post-
exception value 

restore the registers 
; and return 

Figure RGCHK.6: Register-check program listing: second page of two 
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Lab 22: f.!S: 'Storage Scope;' Interrupts & Other 
'Exceptions' 

Reading: 

Problems: 

Ch. 10: 
10.09-10.11 re: interrupts, in general and 

for the IBM PC: especially the section on 
autovectored ... response (pp. 698-99), 
which describes the scheme you will use 
in Lab 22. 

Ch. 11: 
11.04 re: interrupt hardware & autovectored 

vs fully-vectored response; 
11.07 re: programming response to 

interrupt: p. 793, in general; but note that 
much of this is heavy going: much more 
complicated than what we ask you to 
understand in the present lab. 

Lab 22: 
Try to make sure that you understand the 

interrupt hardware, here: why we use a 
Hip-flop; what happens to RAM and 1/0 
decoder during an interrupt response; 
what the assertion of VPA * does. 

11.4 (interrupt hardware),11.12 (p. 780), 11.15 
(p. 794). 

More assembly-language programming: storage scope; Exceptions 

The first two exercises in this lab ask you to continue using the A/D, DIA that you 
installed last time. The first exercise, the 'storage scope,' is fun and will give you a workout 
on some important programming issues: use of moving pointers; table-end tests; matching 
program delays. The second exercise is less important. There you use the keypad to select 
one of the functions you implemented last time: invert, rectify, and so on. This program 
obliges you for the first time to use a mask that keeps more than one bit; and the program 
will make you feel the need for program speed, because the processing that you need to do 

in order to discover which key has been hit will put a noticeable dead (or constant) region 
into the D/ A output. 

The lab then shifts to a new topic: exceptions-Motorola's general term for unusual 
events that are allowed to break into program execution. Here we ask you to do an exercise 
that requires no new hardware at all, and entails writing fewer than a dozen lines of code. 
This exercise-in which you teach the processor what to do if it encounters an "illegal" 
instruction-gives you an efficient introduction to the topic of "exceptions" while skirting 
the work required to demonstrate interrupts. 

The last part of the lab, treating interrupts, we call optional because it takes a fair amount 
of time (perhaps an hour), and probably is not as satisfying as getting on to devising some 
micro application of your own-the task that awaits you in "Lab 23," a lab that really is just 
an open invitation to do something fun with your little machine. We would not be 
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disappointed if it turned out that only students who planned to use interrupts in Lab 23 
paused to do the interrupt exercise. 

We are as anxious as you are to make sure that you have time to do some project of your 
own, now that you have invested considerable effort in getting your little computer to work, 
and in learning something about assembly-language programming. 

Two Debugging Aids: Register-check routines 

Following these lab notes you will find two versions of a debugging aid: a program 
fragment that allows you to break into a running program and discover the contents of all 
registers. You have done enough troubleshooting by now to know that this information 
often is useful. The simpler version is very easy to write (it's just three lines), but relatively 
hard to use (you need to take the bus, then go look at values the program stored in a data 
table). The complex version is about 100 lines long, and requires a second Ready key; so, it 
takes longer to get going. It pays you back, however, by being extremely easy to use: you 
just poke keys on the keypad indicating what registers you want to inspect: type Dl, for 
example, and the program displays the value of that register on the data displays (word
size). Take your pick of these two routines-or ignore them, if you like, and keep on 
debugging as before, with the hardware single-step. From here on, you should do with your 
computer whatever you find most satisfying. 

22-1 Using a Moving Pointer: A "Storage Scope" 

Rather than put out data as soon as it comes in, the computer can of course store it. With 
the data safely stored, the machine then can process away at its leisure. In our programs so 
far, even our modest rectify and keyboard-check operations made us feel pressed for time: 
we had to worry about getting the data out promptly (in "real time," is the strange jargon for 
this). The next program, which stores data in a table, could allow the computer to take its 
time processing the data, then output its results when it was ready. At first, however, we 
will ask the computer to do no processing: simply to "play back" the saved values. 

To store and recall the data we need a movable pointer to memory. The 68000 provides 8 
such address registers (one, A7, is dedicated to use as system stack pointer). It also takes 
care of advancing the pointer, in the "post-increment" or "pre-decrement" mode. Your task 
is reduced to initializing the pointer, and then checking for the end of your table. 

Here is a flow chart describing what the program ought to do. In this scheme, the 
computer fills a table with data (remember, the CPU can use the full 8K of memory, less the 
protected lK at the bottom, and a bit of space for the stack at the top). The program then 
plays back the stored data to the scope-endlessly, or until you hit the Enter key, signaling 
the machine that it should fill the table anew. The flow-diagram shows this Enter check 
occurring only at the end of a playback cycle. You may prefer to check more often. 

If you care that the waveform played back should be at just the same frequency as the 
original, you ':Vill have to make sure the playback loop runs at the same speed as the store 
loop. How can you make sure that Ready-Check, needed in the playback portion, does not 
upset the timing match? 
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'hO 

Figure L22.1: Storage scope: flow chart 

Setting sampling-rate 

The flow chart is over-simple in assuming that you want to sample at full speed. 
Probably you do not want to. It would be nice-once again-to be able to control the rate 
of sampling and playback from the keypad; but at least you probably should plant a delay 
routine, then take the bus to tinker with the delay value. (Make sure both fill and play call 
the same routine, so that you needn't alter two values!) 
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End-of-Table Tests 
There are several ways to determine when the pointer has reached the end of a table. 

• The neatest method uses and End-of-Table code. We cannot use this method in this 
case, because there is no data value that cannot be a valid input; thus there is no 
code available to us. 

• Less neat, but easy: use a counter register; decrement it each time the pointer is 
advanced; test for zero. This method provides position-independent code, unlike 
the next method-

• Address-compare: watch for the end of table by comparing pointer with some 
boundary value. In your little computer, this may be the best scheme, since you 
want to make sure you do not overwrite the Stack, which sits at the very top of 
memory. 

Optional (Fun): Use 'Storage Scope' to Record Sound 

Many weeks ago you built a microphone amplifier with an output in the range 0 to +2.5 
volts. Now you meet the reason for that choice of biasing point (about 1.25 V quiescent): 
the amplifier output is centered in the range of your A/D. If you saved that circuit, you can 
use it with the "storage scope" to look at voice or other waveforms generated by the mike. 
If you listen, you will find yourself obliged to learn about the effect called aliasing-a 
conversion error that results from an inadequate sampling rate, as you may have had a 
chance to demonstrate last time. Your ears are extremely sensitive to this effect-though 
the effect sometimes is hard to see on a scope screen. 

After looking at the waveforms, you may want to do more: 

• If you want to listen to the output, build a push-pull follower (with op amp, 
powered from ±15V) to drive the 8-ohm speaker. Remember to AC-couple the 
push-pull's input, since the D/A output is centered at about 1.2 volts. 

• You may want to do some processing to the stored signal, rather than simply play it 
out. You could easily play back the samples at a rate different from the rate at 
which you recorded them, for example. So, you could turn yourself into chipmunk 
or whale. 

• It would be harder to make a machine that changes the playback rate without 
changing frequency. (Such devices are used by blind people to speed up recorded 
readings.) 

• It is also harder to make a reverb or echo machine. (Sum present sample with 
attenuated version of old sample.) 

You may want to undertake such a substantial programming job as part of a final project in 
this course, rather than now. But if you are eager, here are some suggestions for some 
processing control you might do now. 
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22-2 Keyboard Control (optional) 

If we imagine that you are building a signal-processing gadget, then it's reasonable to 
ask that you make it controllable from the keyboard. Here you will add function keys that 
will let you choose among the above operations: straight versus invert versus 1/2-wave 
versus full-wave rectification. No additional hardware is required. Note: Do no more of 
this than you find interesting. Once you have done the first section of this Jab, the 'storage 
scope,' you may want to hurry on to some project of your own. 

Here is the idea: 
MAIN 
Subroutine: CMND 

Figure L22.2: Keyboard control program: suggested flowchart 

And here are some more specific suggestions: 

1. Try writing the program as a very simple MAIN program, and one subroutine that 
checks the keyboard and alters the input value according to what the keyboard 
commands require. 

2. Mask out the bits that do not interest you (these will be the 4 MSB's, which are set 
not by the latest key-pressing but by the one before). 

then-
do a series of "compare immediate's" with the codes for each of the relevant keys; 
on finding a match, the program should alter the input value appropriately. 

If no match is found, let the program put out the data as it came in. 
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Here, to illustrate the method, is a patch of code that determines whether the key A or C 
has been hit, branching to a particular place in response to each value, or back to the start of 
the loop if neither A nor C has been pressed. 

200 3F04 kmatch: 

202 1810 look: 

204 0204 
OOOF 

208 OC04 
OOOA 

20C 670A 

20E OC04 
oooc 

212 66EE 

214 4E71 

216 6002 

218 4E71 doA: 

21A 381F back: 

21C 4E75 

;KEYMATCH fragment 
; assumes main program has set up an address register 
; to point to the keypad: 
; "movea.w #keyport, aO" ; point to keyport 

move.w d4, -(a7) 

move.b (aO), d4 
andi.b #$OF, d4 

cmpi.b #$A, d4 

beq.s 'doA' 

cmpi.b #$C, d4 

bne.s 'look' 

nop 

bra.s 'back' 

nop 

move.w (a7)+, d4 

rts 

; save scratch regstr 

; get key value (8 bits) 

; force high nybble to zero (this is 
; the old key); keep low nybble 
; (this is the most recent key) 

; is the most recent key "A"? 

; if so, do something 
; appropriate 

; is it C? 

; if neither A nor C, go look 
; again (the silly human has hit 
; the wrong key!) 

; must be C, if we landed here 
; so this is what we do if we get C 
; (you write something more 
; interesting than "NOP"!) 

; then go back to calling 
; program 

; this is what we should do 
; if we get A 

; recall saved register 

; back to calling pgm: task now 
; is done 

Figure L22.3: Sample key-match program fragment 

A Fancier Version 

The scheme we have suggested requires the program to spend a good deal of time 
checking commands, before processing each byte of input data. You will recognize this in 
the output waveform: the horizontal plateaus in the output waveform last longer for the 
operations that result from a branch later in the key-check routine. 

It would b~ neater to do this keyboard check only in the event that we want to change the 
operation. An Interrupt function is perfectly suited to this task, but we will save that 
technique for the next lab. The second best method might be to check only the Ready key 
regularly, and go into the slow key-check routine only if Ready is asserted. 

If you want to hurry on to storing waveforms, don't bother to make that improvement; 
instead, just note that you have met an application where speed counts, and where even this 
fast processor does not seem fast enough. (You might also reasonably conclude that we are 
using the processor in a perverse way: it performs less well than 25-cents'-worth of diode 
and resistor, orR and C.) 
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Exceptions 

For a very quick sampling of the 68008's exception response, try only the software 
exception that opens this section of the lab notes. That requires no additional hardware, and 
should take you no more than ten minutes. 

If you are a little more ambitious, try interrupts minimally by installing the one required 
flip-flop and then entering the test program shown. That work should take about an hour. 

After that you may want to devise a way to put interrupts to practical use; but you 
should not feel obliged to do so. Instead-as we have suggested already-we invite you to 
hurry on to applying your computer to some task that you consider challenging and fun. If 
that task includes interrupts, then carry on here. 

22-3 A Software Exception: "Illegal" Instruction 
This exercise looks at an exception that requires no hardware additions to the computer. 

You will watch the CPU's response to an invalid instruction code. We propose here that you 
write a response routine that simply shows "BADI"-or some other distinctive 
message--on the data display. Later, if you install the register-check routine, you will want 
to let the Illegal response invoke that more versatile routine. 
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Here is a diagram showing what the processor ought to do in response to an illegal 
instruction planted at address 102H. The illegal "vector"-holding the start-address of the 
service routine-is stored at address lOH. In this example, the service routine begins at 
address lEOH. 
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Figure L22.4: A particular exception response: illegal instruction 

(A detail: the processor's response to illegal is atypical in one respect: the program counter 
value stored is not the address of the next instruction, as usual, but instead is the address of 
the illegal instruction itself. An interrupt or a subroutine call, as you know, would store the 
address of the next instruction. Perhaps you can see why the Illegal process cannot follow 
this usual pattern.) 

Write a routine that sends out "BADI" or some other distinctive display when the 
machine meets an illegal instruction. Try a main program that is simply a NOP followed by 
a bad instruction. For example, 

1241 move.b d1, a1 
will do. The processor can see that this instruction is improper. Can you? 
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22-3 A Hardware Exception: Interrupt (optional: for zealots) 

Before you use the interrupt line to tell the computer to do anything interesting, such as 
taking samples of switch bounce (see below), we suggest that you try the little interrupt-test 
routine provided first. That should let you confirm that your interrupt hardware is working, 
and should also give you some insight into the way interrupts operate. The notes on 
interrupts, just below, reiterate some elementary points made at greater length in the Text 
and some 68008 details that may be new even to someone experienced with other machines. 
Skip the first page or so if you already understand interrupts in general. 

A. Preliminary: possible applications 

You have met, already, some cases where use of an interrupt would have served you 
better than the alternative method, polling. The function-select program of section 22-2 
would have benefited: so might the storage-scope, 22-1. 

In each case, the interrupt permits the main program to run at full speed. The program 
need not take time to ask whether some control signal from the outside world has been 
asserted. A pretty good argument for interrupts appears if one imagines using the storage
scope program to capture an image of switch bounce: the CPU takes quite a long time 
(several milliseconds) to display a table of values. If a new switch-bounce event occurs 
during that display, the CPU must drop everything and hurry to sample that new event 
before it's too late. The CPU must not finish its displaying and then go poll the input to see 
if the switch is bouncing. Perhaps frequent polling could do the job in this case, but the use 
of an interrupt allows faster sampling and playback. 

Once you have interrupts working properly you may want to try using them to modify 
one of those two earlier programs (22-1 or 22-2). 

B. Hardware 

Let's talk about a particular example, rather than speak in general terms. Let's suppose 
that we mean to use the storage-scope program to catch and display an image of switch 
bounce. 

We need to interrupt the computer by asserting one of the CPU's two IPL* pins. Two of 
those available on the 68000 are tied together (IPL0* and IP~*) to save pins, so the 68008 
provides three interrupt "levels": 2, 5 and 7, rather than the 6 provided by the 68000 (level 
zero, for both processors simply means no interrupt). 

These "levels" describe an internal interrupt prioritization scheme-something often 
accomplished by a chip external to the CPU. An internal interrupt "mask" is set under 
program control to determine what interrupt priority qualifies to initiate an interrupt. Then 
any interrupt request higher than that mask level is permitted to generate an interrupt.1 

That mask is simply three bits in the Status Register (D10-D8 in the 16-bit word), and can 
be established with a MOVE to SR instruction. The level 7 interrupt request is always 
honored (it is called "non-maskable" on other processors). 

In this lab we will start by using IPL1 *, a pin that generates a Level 2 interrupt request 
when asserted. 

1. Level 7 interrupt does not follow this rule: it is recognized even though the mask is set to 7. 



L22-10 Lab 22: 1!5: 'Storage Scope;' Intenupts & Other 'Exceptions' 557 

Hardware to Request Interrupt 
We need, first, to build a little hardware that asserts IPL1 * at an appropriate time; for our 

present purposes, that time will be the time when the voltage at our pushbutton switch goes 
low. At first we will use that simply as a "test intenupts" key. Once we have intenupts 
working properly we can use this hardware to start the sampling of switch bounce in the 
intenupt-triggered 'storage scope.' What hardware is required? Your first thought might be 
to do this: 

+5 

f ~bSOOS 
~LPLn 

Figure L22.5: Interrupt hardware: poor 

That's a start, but a flawed start. You don't want to intenupt over and over as the switch 
bounces, but once per 'set of bounces.' Recognizing that, you might use a de bounced 
signal to intenupt, thus: 

+5 

Figure L22.6: Interrupt hardware: a little better 

That is better, but still not right. (No doubt you have recognized that we are rehearsing 
the reasoning that led to the design of the "Ready" key hardware in Lab 19.) The problem 
is that the CPU's IPLx * inputs respond not to a falling edge but to a low level. So, to make 
the CPU execute your "intenupt service routine" just once each time you hit the intenupt 
switch, you need to add some logic, just like the Lab 19 Ready key's, to make sure that 
IPLx * goes high as soon as the CPU "acknowledges" the intenupt and begins to "service" it 
(sorry for the jargon, but we might as well get used to these conventional terms). In effect, 
it is up to you to transform a level-sensitive input into an edge-sensitive input. (You may 
recall the Text's observations on the IBM PC's edge-sensitive intenupt lines. Seep. 701.) 

Here, once more, is a flip-flop to do that: 
-1-5" 

C.PlJ 

b-----<1 IPLn 

rl\fTAS 
(mterrup+ <>ctnow le dj~ s-lrnbe) 

Figure L22.7: Interrupt hardware: a proper design: generates a single interrupt request on closing of a switch 
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Interrnpt Response 

a) Processor Saves present Condition 

This you saw in the response to an lllegal instruction. 

b) Processor Determines What to Do When Interrupted: finds the interrupt service routine 
(ISR) 

We will use the slower and simpler of the 68000's two ways of finding what to do in 
response to an interrupt. We will use the chip's autovectoring (which mimics the response 
of a 6800, Motorola's earlier 8-bit processor). The fancier method would require a little 
more hardware: an additional octal 3-state, and we want to spare you that work unnecessary 
in this application. 

INTERRUPT 
<de bounced, 
from bread
boa•d $wi/cf..) 

INTERRUPT 
LOGIC 

GSOOO 

Figure L22.8: Interrupt hardware: for autovector response 

Our logic asserts VPA* during INTAS*2 The 68000 responds by looking to a particular 
vector address (in the manner of a 68003 (The toggle switch that feeds IPLo12 * will allow us 
to transform our interrupt request to Level 7, if we choose to do so later.) 
Note a curious side-effect of VPA * on your computer: your hardware single-step will fail 
during interrupt response: the computer will run through the ISR at full speed, even when 
you put the computer into STEP* mode, because VPA * tells the processor to pay no 
attention to the level on DTACK*. When the program pops out of the ISR, the single step 
will work normally again. 

For our "Level 2" interrupt request, the processor looks to address 68H for the 32-bit 
address of the ISR. 

2. We had to synthesize "INTAS*" ("interrupt acknowledge strobe") because, as usual, the chip designers ran short of pins: they 
provide no such signal on a single pin. Highs on both fc1 and f"o indicate INTAS* and are used to disable both memory and 
the l/0 decoder, the '138 you wired in Lab 19. 

3. Asserting VPA * causes the CPU to autovector, and also makes the 68000 emulate 6800 timing; this feature eases use of the 
new processor with old 6800 peripheral chips, which expect both a slow clock rate (1 MHz, for the garden variety peripheral) 
and timing that does not depend on DTACK*). 
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22-4 Programs: Main & Service Routine 
Reminder: Interrupt Mask 

Note that the CPU ignores interrupts unless you tell it to pay attention to them. (This 
statement does not apply to the Non-Maskable Interrupt, of course.) You tell it to pay 
attention to a level 2 interrupt by writing an instruction that sets the interrupt mask to a level 
lower than 2. We will set it to level 1. 

02 7C Fl FF andi.w #$FlFF, SR ; Ievell int mask, rest of SR unchanged 

A reset of the processor sets the mask to maximum, blocking all but level 7 interrupts. 
So, you must lower the mask at the start of your program-or whenever your program is 
ready to receive an interrupt. The interrupt response itself also raises the interrupt mask 
to the interrupting level; thus interrupts are disabled during execution of the ISR, unless 
they have higher priority. The return from exception (RTE) that terminates the ISR then 
enables Level-2 interrupts again, by restoring the SR mask to the value it held before the 
interrupt response began. Tidy scheme, isn't it? 

Reminder: Interrupt Vector 

You will need to tell the processor where to look for its interrupt service routine. In the 
example below, we have placed the routine at address OODO-a bit below our main 
program. The ISR, you will notice, is tiny, so it fits handily in this niche. 

Vectors 
Adr (hex) where 
vector is stored 

0 Stack Pointer 
3 Reset: PC main 

68 Interrupt 2 

Interrupt Test Programs 

Vector value 

00 00 20 OOH; (as usual) 
00 00 01 00 ; this is just the delay-

and-increment 
; program 

00 00 00 DO ; ISR start address (ISR 
just displays ABCD, 
pauses, and returns) 

Here is a simple pair of programs to let you test your interrupt hardware. The 
'Main' program just increments the display. The ISR puts out a distinctive 
display-"ABCD"-pauses for a few seconds, and then returns to the main program. 
Pressing the Interrupt button should evoke the ABCD display. 
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; MAIN program 

307C8000 
027C FlFF 

4240 
3080 
61 ?? 

5240 
60F8 

; VECTORS: 
address 
()() 

04 
68 

function 
stack ptr 
PC, main 
int level2 

MAIN: movea.w #$8000, aO 
andi.w #$FlFF, SR 

clr.w dO 
DISP: move.w dO, (aO) 

bsrDELAY 

addq.w #1, dO 
bra.s DISP 

·~~~~--~~----~~--~~------;DELAY Routine (assumed to sit at $166) 

2F01 
223C 0001 046C 
5381 
66FC 
221F 
4E75 

DELAY: move.l dl, -(a7) 
move.l #$0001046C, dl 

LINGER:subq.l #1, dl 
bne.s LINGER 
move.l (a7)+, dl 
rts 

; INTERRUPT SERVICE Routine 
48E7 COOO movem.l dO-dl, -(a7) 

30BCABCD 

720A 
4EB8 0166 LOOPLOOP: 

5381 

66F8 
4CDF0003 
4E73 

move.w #$ABCD, (aO) 

moveq #$0A, d1 
jsr.w $0166 

subq.l #1, d1 

bne.s LOOPLOOP 

movem.l (a7)+, d0-d1 
rte 

comment 
as usual 
as in lab 20 
int srvc rtn: (its start address). 
We have suggested $DO, but 
any value will do 

; the usual display pointer 
; mask, to force interrupt mask 

down to levell, without 
disturbing the remainder of 
the Status Register 

; clear display value 
; show current display value 
; call delay~we hope it's still 

around, so you needn't rewrite 
it. In Lab 20, it sat at $166 

; increment display value 
; ... and keep doing it 

; save main register 
; l/4 second delay 
; decrement 
; ... till you hit zero 
; recall main register 
; back to calling program 

; save contents of a register we'll 
mess up-plus one we won't 
use (dO). That's a silly thing 
to do, but we want to 
introduce you to this neat 
instruction 
("MOVEMultiple"), which 
stores as many registers as you 
need, at a stroke; often handy 
for interrupt service. 

; set up distinctive display 
(assumes aO points to display, 
as it does, thanks to main 
program; a bit odd to use that 
assumption within ISR) 

; set up lOX delay counter 
; call delay, assumed to sit at old 

location, $166 
; call dly 1 OX 

; restore registers 
; and back to main (NOT RTS!) 

Figure L22.9: Interrupt test program: main program & interrupt service routine (isr) 
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22-4 NMI: Level 7 Interrupt 
Now we will try a non-maskable interrupt: level 7. To use it, we must install a level 

7 interrupt vector: 
Vectors 

Adr (hex) where 
vector is stored 

Vector value 
7C Interrupt 7 00 00 00 BO ; NMI ISR 

And you must write an ISR at address $BO. Perhaps your program could put out 
another distinctive display, such as "DCBA." 

Remove, from the main program, the instruction that lowers interrupt mask to level 
1; lacking this instruction, the CPU will keep the interrupt mask at 7. If you try to 
interrupt at Level 2, the program should ignore you. 

If you flip the toggle switch that drives IPLo12 *, your interrupt switch now will 
drive a level 7 interrupt request (see fig. L22.8, p. L22-11 ). You should find that now 
the processor recognizes an interrupt from your interrupt switch, regardless of the 
level of the interrupt mask. Later, we may make use of this NMI to allow breaking in 
to a running program and checking register contents. 

Using Interrupts 
When you are satisfied that your interrupt hardware works satisfactorily, you 

should apply it to a problem that requires the quick response interrupts allow. You 
might try the switch-bounce capture: the storage scope loaded promptly upon the 
beginning of bounce. The 7K memory space will allow you to capture more samples 
than you need; your AID gives you a new sample about every 3 jls. If you take these 
samples in at full speed, filling the 'storage scope' table, a 7K-byte table will let you 
get around 20 ms of data, much more than you need for normal switch bounce. But 
there is no harm in that; the important point is that you should get the early switch 
bounce. For a clean scope display, your program should put out a Trigger pulse to 
the scope just before starting a playback cycle. For this purpose, use any I/0 decoder 
line not otherwise busy in your program. 
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Class 23: J..L6: Wrap-up: Buying and Building 
The bag of tricks Horowitz & Hill promised you at the start of the Text now is pretty well 

loaded (though it can, of course, hold a great deal more). Here's a set of alternatives you 
have seen, presented partly just to let you feel pleased with yourself, but partly also to 
remind you that you may face choices when you need to produce some electronic device. 
You may have to choose analog versus digital, hard-wired versus programmable, integrated 
versus discrete. 
An Inventory of Your Bag of Tricks: a tree 

Figure N23.1: Alternatives 

The tree should not be taken to suggest that when you design something you end up on one 
twig and stay there. When you land on a branch like op amp or microprocessor you are 
very likely to reach across to take some discrete transistors or gates or flip-flops. So, if the 
structure is taken to be a tree, then a designer is not like a caterpillar who creeps out to the 
end of one twig; the designer is more like a monkey: nimble, with long arms, not shy about 
leaping or reaching about among the branches to pick up whatever fruit might go nicely 
with the main meal. 

For some applications, the right general choice is obvious. For example: 

amplify a sine wave x 2: 
don't use an A/0, computer (left shift) and D/A! 

count photons (suppose that each generates a unit pulse). The information 
is digital; don't use an op amp to integrate the pulses! 

store a page of typed words, allowing changes 
don't convert the key codes to voltages and store them in 
analog form! 
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Sometimes the right answer is not obvious. A long-term integrator or sample-and-hold, for 
example, could be done with analog or digital methods. At some long period the digital 
method becomes clearly preferable; but it's not obvious where. 

Build versus Buy 

Sometimes you should buy the whole gadget: a digital thermometer; a power supply. The 
more interesting questions come when you decide to build, but wonder at what level to 
begin-in the range from transistor up to fancy large-scale IC or even circuit card. 

Use an IC that does the job, if it's available 

This is obvious, but worth recalling. If you need a small temperature sensor, for example, 
it would be a shame not to take advantage of the nifty linearized sensors & amplifiers 
squeezed onto a tiny chip by Analog Devices or National Semiconductor. You should build 
your own only if the IC version won't do (perhaps you need a still tinier sensor, for 
example). 

A less obvious example: you want to make a hand-held remote controller, or sense the 
level of fluid in a tank. Would you have guessed that the following devices were available? 

UA901 Fluid Level Detector ........ . 

LM 1812 Ultrasonic Transce1ver . . . . ................................... . 

LM1851 Ground Fault Interrupter ............................................. . 
• LM1893/LM2893 Biline Carrier Cur ent Transceiver .............................. . 

LM1871 RC Encoder/Transmitter ............................................. . 
LM1872 Radio Control Receiver/Decoder ...................................... . 
LM 1884 TV Stereo Decoder . . . . . . . . . . . . . . . . . . . . . . . . ......................... . 

Figure N23.2: Some special-purpose IC's (reproduced with permission of National Semiconductor Corp.) 

You might well want to use one of these rather than an equivalent circuit built with op amps 
and cleverness. Same answer for, say, a logarithmic converter. 

This observation leads to an obvious question: Query:How is one to discover whether an 
IC exists to do the job? 

Answer: Use a book called IC Master, a big list of IC's, published annually (with updates); 
it will steer you to the next source: manufacturers' data books. Here's what you would see 
if you were looking for telephone dialers, for example: 

IC MASTER 

LINEAR-Telecommunication Circuits (Cont'd) 

FunctiOfl ~.ce Sou<Ce ''"" Funct10r1 o..nc. Souroe Line Funct1on IJeoAce Sou<ee 

Dialer. Pulse(Tone (w1th last number redial) Dialer. Tone w1th Last Number Redial and Speech Direct Access Adapter 
(Con!' d) Network MA530 Marcom UM9!61 UMC 

MK53721 SGS-Thomson 
Dialer. Tone w1th Speech Network and DC Line Voltage DMI (Digital Multiplexed Interface) Chip Set, Cons1sts 

MK53762 SGS-Thomson Regulator LBIOOSAE AT&T Of: DS·l Chip Set AT&T 
TEL54!3A STC PBL3780 Encsson 
UM9!230 UMC MC34010A Motorola (2974) 

DMI (Dig1tal Multiplexed Interface) Framer 
N229CG AT&T 

Dialer. Pulse(Tone (with LCD driver) MC34011A Motorola (2974, N229GB AT&T 
LR48!06 Sharp 5 2990) 55 

Dialer, PulsejTone w1th Red1al Dialer, One Key 
DMI (Oig1tal Multiplexed Interface) Maintenance Buffer 

N229FB AT&T 
MCI45410 Motorola (2974) UM950BO UMC 

Figure N23.3: IC Master excerpt (reprinted with permission of IC Master) 

uno 

95 
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Another query: How does one get all those data books? 
Answer: it's surprisingly hard, unless you're working for a company that buys a fair amount 
of stuff. Nobody seems to want to send a data book to a plain old academic. Go visit the 
distributors, or go to a trade show. If you have to, you can even buy data books from some 
manufacturers: Texas Instruments and National will sell you any of their data books. That 
may not sound like doing you a favor, but really it is. 

You can get by with just a few books: 

• analog ("linear"): National is essential; Burr-Brown, Analog Devices and Linear 
Technology are nice to have as well. 

• digital: National or Motorola: CMOS, FAST (National) bipolar digital 

• conversion: Analog Devices 

To get at the many other data books that you need now and again, befriend some fanatic 
who collects them, or turn yourself into a little company, and become a fanatic yourself. 

Microcontrollers: 

Full PC versus little controller 

Usually it's easiest in a lab to use a PC, and to buy the board to do a standard job (like 
AID, D/A). Save your energy for odd peripherals. 

You may, however find or invent applications for little controllers: circuits that are many 
(Paul's "META" SETI machine-a big, fast multi-channel analyzer-uses 144 identical 
computer/controllers running in parallel), fast (the SETI machine offers a good example 
again), remote or low-power (or both, like many of Winfield Hill's gizmos, some of which 
sit deep under water; or like the data loggers a graduate of this course leaves out in the 
woods to monitor this and that environmental condition). 

9 Volt Baiter!:) 

0 
{Jc hoard {ac!ua.l siu}: 

Stand- afo,e Controller: 
C r>u, 32 k RAM, 321< EPROM, 
11-(hanMI 10-bii A/D, 
17 I/O (t'nH 

Figure N23.4: A Really Tiny Controller (after data sheet of Onset Computer Cmp., N. Falmouth, MA. Shown with permission 
of Onset Cmp.) 

Build versus Buy 

It's hard to dream up applications where you will not want to buy someone else's 
controller board (available for a few hundred dollars), unless you're manufacturing 
something yourself. In the latter case, you should consider a highly integrated controller 

chip (see opening of Ch. 11 ): Intel's 8051, or heaps of fancier gadgets. Some include AID, 
D/ A; most include serial ports, timers, ROM & RAM. A few even let you talk to them in 
high-level languages. But beware the investment in time required by any chip that is new to 
you, with its new assembly-language, if you are obliged to program it at that level. 
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Generally, you can program at a higher level, if you prefer: perhaps in C or FORTH, or 
even BASIC. 

Ways to Build Things: (getting off breadboards) 
You probably know that the way you have built circuit in this course is not the way you 

will want to build anything that should survive for a while. Consult the Text's Chapter 12 
when it's time to convert a design to permanent form. What you learn in Chapter 12 will 
include a good deal about the three most important ways to put together a circuit: 

solder breadboards 

wire-wrap 
good for one-of-a-kind circuits, analog or digital 
good for one-of-a-kind circuits; convenient for IC's, less 
convenient for discrete parts, and not so good for high-
frequency analog 

custom printed-circuit 
good for all kinds of circuits when you need more than one 

Wire wrap is odd enough so that a diagram may be worthwhile: 

One 'vJrap (fop vie~} 

Figure N23.5: Wire wrap connection: about 40 gas-tight connections link wire to post 

You can see how the wire makes its 40-odd connections on each wrap. These connections 
are gas-tight, so they remain good long after the exposed surfaces have oxidized. On an old 
wire wrap board, the silver-plated wire itself may turn nearly black, while the board 
continues to work just fine. 

What next? 

You now know pretty well how to teach yourself more electronics. Students often tell us 
that when they look again at the Text after finishing the course they find they understand 
passages that puzzled them on their first reading. We expect you will feel the same effect, 
too, and that you will look again at familiar circuits and continue to discover characteristics 
that you had not noticed on your first meeting. (This happens to teachers of electronics, too, 
and helps keep the process of teaching fresh and intriguing.) We hope that you are feeling 
more or less literate, now, in this field: we hope that you now are able to read circuit 
diagrams, and to understand designs. 

That skill helps to answer another question that we often hear: what next? We cannot 
guide you to a next course, or even tell you whether you should keep studying or now go 
get a job that will give you some experience. At least you will want to keep reading so, that 
you can follow the rapid changes in the field. This course has given you only a start, and its 
teachings will not remain up-to-date for long. There are good trade magazines in the field 
that explain new technology, show circuit designs, and (maybe most fun) advertise what's 
new: Electronics, EON and Electronic Design all serve this purpose. A weekly newspaper 
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called Electronic Engineering Times gives a more summary form of the same kind of 
information, and it's full of speculation, industry gossip and business news. 

You will keep learning best, of course, if you continue to design circuits. Next best is to 
look at the work of others. You know enough to be able to understand explanations of 
issues subtler than what we have attempted in this Manual. You might try Chapter 13 on 
high-frequency techniques, for example, or Chapter 14 on low-power circuits; then you 
might also find yourself inspired to go take an engineering course that treats some of the 
fundamental issues we have dodged! And you have seen enough data sheets so that you 
know how to get at the world's amazing variety of semiconductors--especially integrated 
circuits. You should be able to read even a thick data sheet without fear, now that you have 
wrestled with a 48-pin monster of a chip, considered its timing requirements, and tamed the 
thing: made it run loops for you. 

When you meet a new design problem you will ask yourself, 'What does this problem 
resemble?'-hoping to apply what you know to the new problem. That's when your bag of 
tricks is supposed to serve you. If the problem is interesting, nothing in your bag will fit 
exactly. You will begin to call up images of this and that circuit, and will begin to try 
variations, try splicing this and that fragment together, amending this and that standard 
circuit. So, you will begin to cross the boundary from work that can be satisfying but not 
exciting-building standard circuits, adjusting them until they work-into the headier 
region where you make something at least slightly new. Enjoy yourself. 
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Lab 23: J.!6: Applying Your Microcomputer (Toy Catalog) 

Reading: 

Problems: 

Nope. 

Only to come up with a fun and instructive use 
for your little computer. 

This lab simply invites you to play with the available peripherals; we provide only a little 
guidance. Scan these suggestions, then choose or invent a task. The gadgets and their 
possible applications described here are meant to inspire you, not restrict you. The best 
project is a feasible enterprise that you find challenging and fun. 

The projects described here can be simple, if done in their most rudimentary form, or 
complex, if done with refinement. 

1. X-Y scope displays: DQad Easy in its simplest form; much more difficult in its 
refined forms-particularly the true-vector scheme. You may want to try a simple 
version of this exercise even if you then plan to do something else: some people get 
a big kick out of seeing their initials, for example, on a scope screen. 

2. Light pen: A phototransistor detects the CRT beam; the position of the beam is 
controlled by the computer, and the computer thus can tell where the pen sits. This 
can be straightforward to program, but will require some fussy analog work; for 
that reason it's a good wrap-up exercise. 

3. Voice output: Not quite so easy as the scope display, even in its simplest form. It 
offers some challenging programming if you choose one of the neater ways to feed 
the voice chip. A suggested application-a talking logic probe or talking 
voltmeter-would give pretty flashy results for an effort of middling magnitude. 

4. Driving a stepper motor: This can be very easy: you first write a program that 
sends the sequences of 2-bit codes that will make the motor turn. If you do more 
than simply spin the motor, you will have a chance for smarter programming. 
You can, of course, invent some new stepper-controlled gadget, like a primitive 
crane, to lift and move a load. 

5. Little computer meets PC: Some of you are about to go to work in labs, where you 
are more likely to find an IBM PC than a 68000-based computer (though this may 
not remain true). You may want to take this occasion to get used to a PC interface. 
Presumably you will want to let your little computer do some task that suits it (it 
runs faster than the PC; but you want to keep its programs very simple, since you 
have to key them in by hand), and pass the results to the PC, which is better suited 
to fancy operations (since you can program it at a higher level). 

6. Games: Here the X-Y display that begins these notes probably is essential. You 
can use a joystick to input position data to your game. The joystick would give you 
a chance to build the very useful device, a 2:1 analog multiplexer, in order to let 
you use a single AID (already in place) to accept both X and Y information. The 
analog mux is not hard to build, but it is a circuit worth meeting, and one that 
would oblige you to consider some timing issues. 
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7. Sound sampling/generation: Again, this can start out simple and get as fancy as 
you like. By now you have stored a waveform, using your AID (back in Lab 22). 
You can do more by processing the stored information: you might, for example, 
provide echo or "reverberation;" you could also splice samples together under 
keypad control to make a sort of synthesizer. You could even make a talker, this 
way. 

8. Any other project that intrigues you: If you dream up a project that you find 
challenging, we will be well satisfied. Aim to keep hardware and program simple. 
Above all, try to take advantage of the powers of this lab computer, and to dodge 
its weaknesses: it lets you build and control hardware; it makes programming 
laborious. So, don't do a job you can do much better on an ordinary PC or on a big 
computer. Don't write a word-processing program. 

23-1 X-Y SCOPE DISPLAY 
This is the quickest and easiest way to draw a picture on a CRT screen. If you use a 

capacitor to join the points your program puts out, you achieve a quick and easy 'vector' 
display, good at drawing lines, including diagonals, whereas the more usual raster-scan 
(TV-like) display does lines laboriously with a succession of dots-and incidentally makes 
ugly lines whenever the slope approaches vertical or horizontal (an effect called "aliasing"). 
More generally, since most TV and monitor displays are coarse enough to show you the 
individual pixels, a raster scan display usually is pretty ugly. 

Hardware 

You will need to give your computer a second D/A (two more if you implement the 
hardware "Zoom": see (d), below). The complicating wrinkles suggested in the later 
subsections require a bit more hardware. Most of the work, however, lies in the 
programming, and in building the data tables your program is to send out. The payoff 
comes when you get to put whatever you choose on the scope screen. 
Preliminary note: Two D/A Types 

In the lab we have two sorts of D/A: 

"microprocessor compatible," single supply: 

"multiplying:" 

the AD7569 (AID, D/A in one package) and the AD558, an 
8-bit single-supply part (you used this D/A in Lab 17, 
where it provided feedback for the successive
approximation A/D). Avoid the AD558 in any application 
where it is fed directly from the data bus, because of its 
unacceptably-long setup time. (See sec. 11.05, discussing 
this characteristic of the '558.) 

this type offers an output that is the product of its digital 
input and an (analog-) input current. We exploit that 
characteristic in the Zoom feature (23-1-b-3, below). The 
multiplying converter we have in the lab, the MC1408, 
requires three power supply voltages. It also lacks internal 
latches. So you should use the 1408 only if you want to 
use its distinctive multiplying feature. 
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The 68000's multiply instructions should let you achieve the same results in software. 
But if the hardware method appeals to you, you should decide at the outset whether you 
mean to Zoom, so as to choose the appropriate D/ A. 

23-1-a 16 X 16 Dot Array Hardware 

For a 16 X 16 array of dots, two 4-bit D/A's are sufficient. It is convenient to drive 
these from a single (8-bit-) port, and to take advantage of the D/A's internal register. Here 
is the laziest scheme, which does not require disconnecting lines from your D/A-A/D. If 
you can tolerate an error of about 1 LSB in one of the outputs, this lazy scheme is good 
enough: 

Of H 

-8 
0,0 f,O 

Figure L23.1: 16 X 16 X-Y display hardware; scope screen map 

The program should fetch a byte at a time from successive locations in a table of x-y 
display values, and put out those bytes. If you include a call to your delay subroutine, you 
will be able to tinker with the drawing rate. 

Complications/Improvements 

23-1-b-1 Connect the Dots 

As you learned in elementary school, connecting a few dots can give a coherent picture. 
So, with relatively little programming effort (fewer coordinates to list in your data table), 
you can draw straight-line pictures. To connect the dots, add a low-pass filter at the output 
of each D/A. Try RC of a few microseconds (e.g., R = 2.2k, C = 0.01 j.!F). But you will 
have to experiment; the visual effect will vary with the drawing-update frequency, as well 
as with the filter's RC. The filter slows the movement of the output voltages, of course, so 
that the movement of the scope trace becomes visible. You will notice that this new scheme 
obliges you to pay attention to the sequence in which your program puts out these dots. 

23-1-b-2 256 X 256 Dot Array 

You can use two output ports, of course, to feed the full 8 bits to each D/ A. If you do 
this, you should arrange things so that the new information reaches the two D/A's 
simultaneously. That requires use of an 8-bit register of D flip-flops. Here a 558, fed by the 
output of the D register, may be easier to wire than the 7569. We will leave to you the 
details of this hardware. (Use a 74HCT574 8-bit D register; enable the '574 3-states 
continuously.) 
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OIJ"T1 

Figure L23.2: 256 X 256 X-Y display hardware: register added for simultaneous updates 

If you enter a large number of data points, you will begin to see flicker in the display, 
even if your program includes no delay routine. The screen needs to be refreshed about 30 
times/second in order not to flicker annoyingly. You can calculate the number of dots you 
can get away with-or you can just try a big table and examine the resulting display for 
flicker. 

23-1-b-3 Size Control; Zoom 
As we have suggested already, you can zoom in software. But if you want to make your 

programming task a little easier, and like the neat feature of a picture symmetrical about 
zero as its size changes, then consider the zoom hardware described just below: 

Zooming, you will recall, is the operation that can exploit the multiplying, current-output 
D/A's (MC1408) rather than the AD7569. The '1408 takes longer to wire because it does 
not include an input latch and because it obliges you to take care of an annoying number of 
pins: for frequency compensation, and multiple supplies. 

'1408 Details 

Here are wiring details for the '1408: 

+5 IOUT 0Tol-f>.. 
+--

...-------- Vovr 
O-ro -4-V 

2k 

Figure L23.3: '1408 multiplying DAC: pinout and wiring 

Incidentally, in case you choose to modify your circuit, the '1408's reference current flows 
into the summing junction of an internal op amp; therefore, you can provide a voltage rather 
than current reference, if you prefer. In that case you simply feed the '1408's pin 14 
through an appropriate series resistor (for example, 7.5k from a+ 15V supply). 

You may prefer a newer single-supply multiplying D/ A such as the AD7 524; if you use 
one, you will need to modify the circuits we have shown below, which assume a '1408. 
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One more output port (4 to 8 D flops) and D/A, plus a current mirror, will allow you to 
control the size of the X-Y pattern put out by your first two D/A's if you used multiplying 
D/A's for the X-Y output. 

In the circuit below, we feed a constant current into just one of the three D/A's-the 
"Size" D/A. The other two D/A's are fed not a constant /ref but, instead, the Size D/A's 
output current (mirrored by duplicate mirrors). Thus the computer can use the SizeD/A to 
scale the X-Y outputs. +-J':J 

y 
2..2.1( 

Figure L23.4: X-Y size control, using third d/a and current mirror; receding square, drawn with this hardware 

Below is a suprisingly-subtle image drawn with this hardware. This pyramid appears to 
show cleverly-gradated shading. In fact it is only a diminishing square. The square was 
drawn as usual by defining four points, then 'linking' them by slowing the D/A output with 
an RC. The apparent shading results from the CRT beam's gradual slowing (exponential) as 
it moves from source to destination. 

Figure L23.5: Receding square 

A circuit refinement is proposed below to center the image on the CRT regardless of size. 
Without this circuit addition, a change of size also moves or translates the image: since X 
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and Y are always negative, the visual effect will be as if a figure that grows were moving 
down and to the left on the screen, as well as toward you. If you prefer to make your figures 
"approach" straight-on, then you should make the modification shown below: an op-amp is 
added to the output of each of the D/A's (X and Y); the op-amp allows you to center the 
coordinate output at zero volts. 

In the circuit below, half the D/A input current is applied to the output op amp's summing 
junction, and thus is subtracted from the output, centering that voltage as the scaling current 
varies. 1 

X 

fk 4.7k 

y 

Figure L23.6: Op amp added to D/A to give V out symmetrical about zero volts 

23-1-b-4 True Vector Drawing: Position-Relative 2 

Your drawing table need not store absolute screen locations. Instead, it can store vectors: 
direction and length relative to present screen location. The relative vectors suggested 
below are listed in the manner of compass headings: ESE = East-South East. This scheme 
would work with a 4-bit direction specification 16 directions). The remaining four bits 
could define magnitude; that magnitude could be used with the multiply instruction to 
stretch the unit-length direction vector (approximate unit lengths will do!). 

5, es ... ;_-f-----+--+-----..-;--+r :t., s-N 

~ . 

Figure L23.7: Drawing with true vectors: relative movement 

This way of defining a figure allows one to rotate the figure without much difficulty. The 
programming is a good deal harder than for an absolute X-Y figure. 

1. Thanks to Extension student D. Durlach for this nifty amendment (1985). 
2. Thanks to Summer School student Scott Lee for proposing and demonstrating this arrangement (1985). 
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23-1-b-5 Animation 
If you enter the coordinates for two or more similar but different pictures in memory, and 

then draw these pictures in quick succession (changing the picture, say, every lOth of a 
second) then you can 'animate' a drawing. Evidently, you will need a large table to animate 
even a simple figure, so start modestly. You will want to use the follow-the-dots scheme to 
minimize the umber of data points required to draw a single image. Here's a crude 
example: 

Figure L23.8: Rudimentary animation 

23-1-b-6 Computed Drawing 

The tedious loading of values into memory demanded by the table-reading schemes we 
have suggested probably have made you yearn to to turn over to the machine the job of 
determining what points it should draw. This you can do, of course. You could write a 
program that would draw a rectangle, say, by incrementing the X register for some steps 
while holding Y fixed, then incrementing the Y register while holding X fixed, then 
decrementing the X register ... , and so on. 

Two excessively-experienced programmers have used the X-Y hardware to draw cubes, 
which they then could rotate about any of three axes.3 

Figure L23.9: Computed drawing: two versions of cube that can be rotated about its axes. The photo showing multiple cubes is 
a multiple exposure showing the cube rotating over time 

This task requires too much programming sophistication-and too much code-for ordinary 
mortals. 

3. Grant Shumaker did this first (1986), and did it entirely in assembly-language, entered by hand. This is a feat roughly 
comparable to climbing one of the middle-sized Himalayas without oxygen. David Gingold did it again, this time putting 
shapes within cubes; David used oxygen, as noted below under 23-6 in a discussion of David's remarkable asteroids game. 
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23-2 LIGHT PEN 
This task combines software and hardware, analog and digital in a satisfying way. The 

analog part is ticklish: you are likely to spend a good deal of effort fighting ambient light, 
for example; and you will get best results if you can assemble a little light wand, using fiber 
optics and some tape or heat-shrink tubing. 

Hardware 

Output: You need theX-Y output hardware; 4 bits per D/A is plenty. 
Input: You need a photosensor circuit, mounted on a flexible cable. You can use the 

photo-transistor plus op amp current-to-voltage converter that you built back in Lab 
exercise 8-6-b. You may want to put a potentiometer in the feedback loop, so that you can 
adjust gain (this setting turns out to be delicate). In addition, to fend off the effect of 
ambient light, including light from the scope beam before it arrives at the point the light pen 
means to watch, you will find a light shield helpful. We used a fiber optic bundle or fiber 
attached with opaque heat-shrink tubing to the phototransistor: 

C..RT 

opaq,ue. f 
heat- scnlc 
tubin9 

Figure L23.10: Light pen improvement: light shield and fiber optics 

No special treatment of the fiber ends is required; just try to make clean cuts. 
A comparator can watch the output of the light-sensing circuit; its threshold should be 

adjustable. The comparator will tell the computer when the CRT beam has arrived. 

Suggestions: if your pen has trouble detecting the beam, which is present only briefly, 
you may want to modify the sensor circuit, adding a capacitor in the feedback loop so as to 
let the circuit integrate the effect of successive appearances of the beam. This should not 
cause errors, since the 'last straw' of charge that tips the integrator output past the 
comparator's threshold will occur while the CRT beam is at the sensor's position. 

Program 

The foundation of the program is just an X-Y raster-scan (that is, TV-like scanning). You 
should include a delay, to give the light-sensor circuit time to respond. When the program 
detects a response, the register holding the current X-Y data suddenly becomes significant, 
and can be passed to whatever program you devise to use the light pen input. 

Suggestions: ways to use the light pen 

Draw on the scope screen 

Probably it is most fun to let the pen do something to the display: it could brighten an X-Y 
dot, for example, allowing the pen to draw on the screen. For such an application you can 
use the scope's so-called Z axis input: a scope input that dims the scope a good deal when a 
positive voltage is applied: +5V usually is sufficient; some scopes want + 15V to show an 
appreciable effect. 
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One difficulty with this scheme, perhaps evidently, is that the light-pen operation requires 
a beam bright enough for the pen; the selected dots cannot be much brighter. 

Select among several functions: music? 

Light pens are used, as you know, to make a computer do this or that operation-and the 
operation need not be one that alters the screen display. You could use the pen to alter the 
pitch of an output square wave, for example, so that the pen formed the input of a strange 
musical instrument (the X value might control pitch, for example, while Y determined 
amplitude; X could be passed to a count-down delay loop that would give a kick to the 
speaker at the end of each count-down). You would have to tinker with delay constants, of 
course, to get the frequency down into audible range. 

23-3 VOICE OUTPUT 
Two nearly-equivalent chips will put out humanoid sounds in response to a 6-bit code 

defining a "phoneme" or "allophone"-a fragment of sound such as the "b" and "oo" in 
"boo." You may find a talker chip that you prefer; these are not state of the art, but are easy 
to use. The chips are-

• SC-02 
(developed by Votrax International, Troy Michigan; now sourced only by 

Artie Technology) 
• SC-01 

(this is an old Votrax chip, hard to find; it is very similar to the SC-02, but 
simpler, lacking its programmable attack, duration and pitch) 

You will need to check the data sheet for the talker that you have in the lab, of course. The 
notes below describe use of the SC-01, and will serve as only an approximate model if you 
use another chip. 

A. Hardware 

1- What the Synthesizer Requires 

A VOTRAX voice synthesizer chip, or equivalent, does all the hard work for you: 
generates one waveform in response to each digital "phoneme" code. The computer's job is 
only to provide a new code promptly, when the talker chip says that it has finished putting 
out its current sound. 
These are the signals used by the VOTRAX SC-01: 

• a 6-bit phoneme code (D0 - D5) 

• a Strobe signal from the computer to the chip (D6). 

This signal tells the chip that the phoneme code is valid; the rising edge clocks the 
code into the chip's internal register. 

• A Ready signal from the chip to the computer (D7). This signal tells the computer 
that the chip has finished generating its last phoneme, and needs a new phoneme 
code. (Strobe clears Ready, incidentally.) 
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The Strobe signal must not occur until at least a microsecond after the phoneme code is 
presented to the chip: 

DA"TA { (VA Lit>) 

516 t R'EN:>Y__./ 
I 

~ ~ ~ I J-'.s 

Figure L23.11: VOTRAX timing 

This requirement results from the long setup time of the chip's D register (the voice chip is 
made of slow CMOS). 

2- Hardware That You Must Provide 

You will need one output port (7 bits), and one input bit: 

74 f-\(12.5 

1---+- REI>.P'j --------

'-----I/o decoder INx 

!----'~-- SIR06E -----

1---- phoneme code ( b l·nes)-

Figure L23.12: Hardware to drive voice chip 

B. Software 

1- Two useful talker routines 

"To VOICE card~ 

DIP tonf'\edor 

and cable 

The interesting part of this task comes when you choose a way to get data from a table 
of phonemes, in order to send it to the chip. There are some duller chores to take care of, as 
well. Specifically, you need patches of program (which we have written out for you) to do 
the following jobs: 

• give the chip's STB an initial kick, and tell the chip to be silent; 
• check the Ready line, then send the 6-bit phoneme code when Ready comes High, 

then assert STB after the Data's long setup time. 
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0000 
0000 
0000 
0000 
0000 
0000 
0000 
0004 
0008 
0008 
0008 
OOOA 
oooc 
0010 
0010 
0012 
0016 
0018 
0018 

0000 
0000 
0002 
0004 
0008 

OOOA 

OOOE 

0010 
0014 

0016 
001A 

001C 
001E 

Two utility routines to drive the talker chip 

We have written these as subroutines. Your more interesting Main program can call these 
at its pleasure. 
Subroutine: STARTUP 

367C 8003 
327C 8001 

70 3E 
1680 
0000 0040 

1680 
0200 OOBF 
1680 

4E75 

Subroutine: SENDOUT 

1F01 

1213 
0201 0080 
67 F8 

0200 OOBF 

1680 

0000 0040 
1680 

0200 OOBF 
1680 

121F 
4E75 

;STARTUP subroutine: sends silence code without 
awaiting Ready: needed on first pass. Uses dO, 
which is used for output code throughout 

if pointers are not already set up, define them thus: 

movea.w #$8003, a3 
movea.w #$8001, a1 

startup moveq #$3E, dO 
move.b dO, (a3) 
ori.b #$40, dO 

move.b dO, (a3) 
andi.b #$BF, dO 
move.b dO, (a3) 

rts 

point to Vox data port 
point to the generic Ready-bit port 

send silence code. Strobe is low. 
send to talker 
force Stb bit high, leaving other bit 
unchanged 

send it, Stb high 
force Stb low 
send it 

the deed is done 

;SENDOUT subroutine: sends whatever is in dO, 
but first awaits Ready from Votrax, and 
then sends STB pulse as required 

sendout move.b d1, -(a7) 

test: move.b (a3), dl 
andi.b #$80, dl 
beq.s test 

andi,b #$bf, dO 

move.b dO, (a3) 

ori.b #$40, dO 
move.b dO, (a3) 

andi.b #$bf, dO 
move.b dO, (a3) 

move.b (a7)+, dl 
rts 

; save register which 
; we'll mess up 

Ready? (check bit 7) 
mask all but bit 7 
loop till ready 

force STB low 
in phoneme code 

send it, STB low 

; force STB high 
send it 

; force STB low again 
send it 

restore saved register 
back to calling pgm 

Figure L23.13: Two utility routines 

Before attaching your computer to the Votrax, check that your hardware and program 
appear to work. You can do this by single-stepping with the Repeat key and watching your 
program's output on your data displays (insert an OUT to Displays at the point where the 
program later will drive the voice chip). 

You can also check your program's response to the READY signal that later will come 
from the chip (see below). For a continuous output of phonemes, hold Ready high. When 
you are satisfied that your circuit works, attach your computer to the VOTRAX, and try 

sending this table of data to the voice chip: 



578 Lab 23: J.16: Toy Catalog L23 -12 

Message Table 
Address Data 
(you define start address) 
XX XO OB 

1 09 
2 2A 
3 03 
4 2D 
5 3A 
6 2B 
7 19 
8 IF 
9 3E 
A 3E 
B FF; this is one possible STOP or EO Word code 

Figure L23.14: A table of phonemes for testing your program & hardware 

When you are ready to compose messages of your own, consult the talker chip's data 
sheet for the list of its phoneme codes, and a 'dictionary' of words defined as sequences 
of phonemes. If you are using an assembler (as we hope you are, by this point), you can 
define, for the assembler, the equivalence between phonemes and their binary codes. 
'UH1 = $19,' for example, where UH1 is the sound of the 'o' in love. Then you can 
write out words by listing their phoneme names, not hex codes: you can write love as 'L1, 
UH1, V.' 

2- Neater ways to get codes 

Typing in those few phoneme codes probably convinced you that if you were using the 
Votrax to say more than a few words it would be useful to leave some standard words 
stored permanently in memory, then pluck out whole words rather than single phonemes. 
Such a scheme would pay when applied to any word used more than once. The 68000 is 
eager to help you with its versatile addressing modes! 

3- An Application: Talking Voltmeter or Logic Probe 

A DC input to your computer's AID can serve to select a message to be played back. 
You will want a tidy way to tell the computer to state its message anew. One reasonable 
possibility is to let the 'meter' speak whenever it has a new value to report. That would 
be especially appropriate for a logic probe, which would speak only when it found High 
or Low after float; it could respond to High and Low in immediate succession by saying 
something like "switching." 
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23-4 STEPPER MOTOR 

23-4-a Generally 
A stepper motor contains two coils surrounding a permanent-magnet rotor; the rotor 

looks like a gear, and its 'teeth' like to line up with one or the other of the slightly-offset 
coils, depending on how the current flows in the coils. A DC current through these coils 
holds the rotor fixed. A reversal of current in either coil moves the rotor one 'step' 
clockwise or counter-clockwise (a coarse stepper may move tens of degrees in a step; a 
moderately fine stepper may move 1.875 degrees: 200 steps/revolution). The sequence in 
which the currents are reversed (a gray code) determines the direction of rotation. 

For example: 

toco,\A ~ 

tococlB ~ 

c\ockw1se counter- cloc.kwise 

Figure L23.15: Sample waveforms to drive stepper motor's two coils 

Integrated stepper-motor driver chips can make driving a stepper extremely easy: the chip 
usually is just a bidirectional counter/shift-register, capable of sinking and sourcing more 
current than an ordinary logic gate. But since a computer can easily do most of the work 
that the chip does, it makes sense to wire up some power transistors and then write a little 
routine to do the job. Specifically, the routine should take care of these tasks: 

• store the pattern most recently sent to the motor; 
• generate the next pattern, either clockwise or counter-clockwise; 
• send the new pattern after a delay that (added to others) will determine the rate of 

rotation. 
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Hardware 
The motors can be driven from power MOSFETs (VNOl is marginal but possible; the 

RFP4N05 could do the job easily; see Lab 11). Here is the scheme: 

Figure L23.16: Stepper driver hardware 

One way to generate such successive patterns is to load a value into a register and 
rotate that value, feeding two adjacent bits to the motor's two coil-drivers: 

D, 

Do 

2-bit 

~ ~ 

_/\___) ~ 

c\oc.kwise counter- c!otkw<se 

nurn~rs: 231 0 2 3 1 3 2 0 1 3 1 

~{'otate~ 

~0011~\_) 
~ ~ } output 

Figure L23.17: Rotated register can produce the 2-bit drive pattern for stepper 

23-4-b Using the motor 

You will dream up your own ways to use a motor, but here are a few uses students have 
tried. 

Crane 

Two motors, each with a spool on its shaft to wind cord, can rest on a tabletop, with the 
load suspended from both cords. The two motors can work together to lift, move, then 
lower the load. This is easy to do crudely, but would be challenging if one wanted to let 
the load move vertically, then horizontally, then vertically again. A small electromagnet 
could let the machine pick up and drop an iron load (a washer, perhaps). (A small spool 
of wire-wrap wire is handy for an instant home-made coil; put an iron bolt through its 
core). (One student built such an electromagnet, hung it from a stepper-driven 'winch,' 
and mounted the whole thing on the tractor described below.4) 

4. This was Dylan Jones' ingenious work. (1987) 
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Drawing machine 

Two motors can drive the X and Y knobs of a child's sketching toy (the kind with a 
glass cover, coated with aluminum dust on its sealed underside; a sharp stylus etches a 
dark trace in this material). Such a machine makes a curious form of semi-permanent 
drawing. The scheme resembles 'turtle graphics': any new vector begins where the last 
one terminated. This application requires motors of exceptionally high torque, and a little 
machine-shop skill in order to link the motors to the two shafts. 

Little tractor 

(:OIL A, 7 

COIL 8, 

COIC A~ 

To 
DRIVERS 

X f10TOI? 

SltNfLE '11/ICIPO' 

d;"J'"'; .. s •• -11.-.si 

Figure L23.18: Two stepper motors can drive an X-Y drawing toy 

Two motors mounted end to end, and each with a rubber-tired wheel on its shaft form a 
tractor that can be steered (in the manner of a bulldozer or tank) by driving the two wheels 
independent! y. 

Figure L23.19: Tractor/tank: steered by independent drive of its two rear wheels 

A couple of ambitious students taught such a gizmo--which was equipped with a switch 
on its nose to detect collisions-to blunder its way through a maze. It then cruised calmly 
out, avoiding all the blind alleys it had found on the way in5. 

That was a challenging project, and putting together the tractor itself requires some 
machine-shop skills. Because the motors draw a lot of current, the tractor was fed 
through an umbilical cable, which carried logic signals as well as power for the motors. 

Brilliant & Harebrained Projects 

We have not seen the following done, but it would be nice: to reproduce with 
microcomputer control what was perhaps the most spectacular project ever: a pencil 
balancer. The original project was done with entirely analog methods. This machine was 

5. Mike Pahre and Danny Vanderryn performed this feat (1988). They even had their little machine do a victory dance (in the 
manner of a football player who has just scored a touchdown) when it had completed its graceful exit from the maze. 
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able to keep a pencil balanced on its point for a few seconds, by moving a little platform 
about on a smooth base. 

The analog design shone an LED on the upright pencil while a pair of photodetectors 
watched to see if the pencil leaned away from the vertical. The photodetectors fed a 
differential amplifier, which drove a DC motor whose response tended to force the pencil 
upright. The motor did this by spinning a pulley on which a string was wound, and the 
string would draw the balancing-block one way or the other on the base platform. 

X rnofo r Y motor 

Figure L23.20: Pencil balancer mechanism6 

Two such LED-photodetector-pair units took care of watching for X and Y lean. The 
negative feedback in this arrangement made the mechanism work quite well even though 
the construction was crude in the extreme: sewing thread, wooden pulleys, a 
composition-board base, and odds and ends of adhesive tape were its materials. 

The mechanism worked pretty well until the little platform reached one of the edges of 
the base. There, the pencil would fall. What the whole design lacked was any awareness 
of the position of the moving block upon the base. A computer-driven version of this 
machine might fill this gap. If the computer used stepper motors, it could easily keep 
track of the block's absolute position even as the motors carried out balancing corrections 
according to the scheme used in Paul's analog machine. As the block approached any 
limit, the computer could exaggerate corrections in a sense tending to force the pencil to 
lean back toward the center of the base. Easier said than done, we admit, but perhaps 
someone will feel like using the microcomputer to improve on Paul's already-impressive 
design. 

6. This balancer was the work of the inspired tinkerer extraordinaire, Paul Titcomb (ca. 1986). Another of Paul's amazing 
projects deserves mention here; it may inspire someone to a similar effort. Paul made a drawing-mimicker using his lab 
computer. Paul rigged a 2-jointed arm that held a pen. He placed a potentiometer at each joint, and as he guided the arm, 
drawing a picture by hand, he had the computer read the joint-potentiometers at regular time-intervals. Then, when he had 
finished a drawing, Paul would ask the computer to 'play back' the motions it had sensed, by driving a pair of stepper motors 
on the joints of a similar arm also holding a pencil. The machine never quite worked: its drawings showed a rather severe 
palsy-probably an effect of its mechanical crudity and the fact that (unlike the pencil balancer) it operated open 
loop--without the error-forgiving magic of feedback. It was an impressive gadget, nevertheless, and the arm and its last, 
shaky drawings languish at the back of our lab. They await someone who will perfect the scheme. 
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23-5 Little Computer Meets PC 
Here is a hardware suggestion for an interface between your little computer and an 

IBM PC. The hardware assumes that the PC is going to run full tilt, unaware of what the 
little computer is doing. The little computer is given the chores of checking whether the 
PC has given it a value (Flag To68) or has picked up a value and thus can be fed another 
(Flag From68). If the PC is running a BASIC program, there's no question the little 
machine will outrun it, keeping the big machine satisfied-picking up all it can send, or 
feeding it all it can eat. 

PC O,J.ta.6us Lab _,...Comp 
Oatabu.s 

~--------------------~-------------------~DxgOr----7~----~ 
In Port 8 

address 
rnafeh 

(£.not DMA) 

Aq Ag A., A6 A5 Alf ••• 
1 1 0 0 X X -::: i 300 

PC -4 Lab f'C 7'f/ICT 
57'f 

"fEN (Pc) 

Figure L23.21: A PC-to-little-computer interface 

Fl(g 
''TotQ 

;.tC D2 

A pioneering pair of students 7 used this hardware to let the little machine fiii a table 
with data from the A/D, then pass the data to the PC, which did a Fourier transform. This 
was an impressive exercise, but a bit heavy on programming. We encourage you to 
choose a project that stresses the hardware issues closer to the core material of this course. 
We suggest-once more--that you make all your programs very modest. 

Notes: 

1. You can build the PC interface on a breadboard mounted on a PC plug-in card 
(e.g., Global Specialties PB-88). The little computer can connect to this card 
through a ribbon cable terminated in an RS-232-style connector (DB-25) that 
plugs into the PC card. 

2. If you program the PC in BASIC, note that you should use INP(address) not 
Peek, since these ports are //0 ports, not memory locations. 

7. Wolf Baum and Tom Killian demonstrated this nice exercise (1988). 
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23-6 GAMES 
Using the computer to drive the scope in its X-Y display mode one can, of course, 

draw anything on the scope screen. A few years ago, every kid was fascinated with video 
games. Maybe you can work up some enthusiasm for a game that you have fashioned 
yourself. 

The first video games, as you know, resembled ping-pong or squash. You can, if you 
like, use a potentiometer driving your AID to determine the position of a "paddle" (a line 
drawn on the scope screen). Then the ball-a traveling dot or figure--can rebound or not, 
depending on whether it "hits" the paddle. One ambitious student made the angle of 
rebound depend on whether the hit was near the center of the paddle or near either end. A 
ball that hits the wall presumably should "bounce"; what would that imply for the slope of 
its travel on rebound? 

If, like most video game players these days, you find batting a ball too peaceable, you 
can redefine 'ball hits paddle' to mean something more alarming, like 'ABM hits ICBM,' 
and you can make exciting things happen in consequence: let parts scatter on the scope 
screen, or let a sound output change, as one student did: (beeps change to whoops?) 

Figure L23.22: Some CRT games; one a mad tour de force on the little machine: asteroids 

The 'tour de force' shown above suggests how far you can go, given time and skill: this 
zealot8 wrote an assembly-language program for his little machine that let it take in serial 
data and load it into specified sections of memory. Then he wrote his 68000 code on a 
full-scale computer, in C. He also expanded his little computer's RAM to 32K and built 
some nice vector graphics hardware that drew straight lines of uniform brightness, 
regardless of length. This was a project wildly excessive for our course. This student 
happened to be a very good programmer who was able to combine work for two courses 
on this project. So don't think you're falling short of some standard because you decide 
not to write a game of asteroids. 

Joystick 

A joystick-two pots linked--can provide X-Y information to your game, so that you 
are not restricted to sliding a paddle up and down on the screen, but instead can make a 
figure move anywhere on the scope screen (fleeing aggressive blobs, if your game is 
conventional, as one recent student's was). The analog switch DG403 makes the 2:1 
multiplexer needed for this X-Y input easy to implement; you will need a flip-flop to hold 
the switch in either mode until the computer changes it. Check the switch specifications 
to be sure the switch output has settled before you start converting the value. 

8. David Gingold did this project, and did it solo (1988). 
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23-7 SOUND 

23-7-a: Processing Stored Inputs 
It's fun to alter stored sound waveforms, drawn from your A/D. An echo machine, 

suggested in Lab 22, lets you pretend to be down in a cavern, well or culvert, depending 
on the echo-delay and echo-attenuation that you choose. Your program can take in new 
samples as it plays out old, or it can work on a stored table of values. Probably the live 
input version is the more fun of the two. You may want to let yourself vary the echo 
dimensions from the keypad, as the program runs. (This would be a primitive version of a 
machine used by recording studios to put acoustically-bland studio music into fictitious 
settings: small nightclub, big concert hall, cathedral.) 

It's also possible to alter the playback rate without altering frequency, with some effort. 
This trick is used to let the blind listen efficiently to slow-talking teachers (like Tom). 
Another version of the machine could be used to take the stored speech of a quick talker 
(like Paul), and then play back this speech closer to the information-input rate of the 
ordinary human brain. 

23-7-b Making Noises ("music"?) 

You can make some pretty ugly noises by using your computer to drive a 
speaker-especially if the amplitude is a little big. (Like oxymorons?). This task offers a 
virtually-unlimited range of difficulty. In three minutes you will be able to produce a 
tone. But whoops are a little harder; melodies are harder than that; so is keypad control; 
and you can surely imagine lots of grandiose possibilities, like a scheme that lets the 
computer memorize a melody entered at the keypad, or a drum machine (need a cymbal? 
Perhaps a software pseudo-random noise generator would help: see Text sec. 9.32 et seq.). 

An easy way to let the computer output a chosen frequency is to let an output from the 
1/0 decoder drive a MOSFET that drives a speaker. (This you have done before, back in 
Lab 15, as you may recall. Remember the programmable + n counter?) For higher 
volume, square the waveform with a toggling flip-flop before driving the transistor. On 
second thought, maybe we shouldn't be telling you how to make louder noises! 

Whatever you do with your little machine, don't forget to have fun. 
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Cbs. 10, 11 Review: Important Topics 
Microcomputers, Microprocessors 

1. Hardware 

a. Buses: 3-states to drive bus, flops to take information off it 

b. address decoding; using control lines as well: e.g., I/0 decoding; partial 
address decoding 

c. word/byte transfers 
d. bit input, pulse output: 

i. an occasional external event is best saved in a flip-flop, usually 
edge-triggered with constant input 

ii. pulse output: simple way, if pulse can be short, just use decoder 
output; for longer pulse, need an output flop 

2. Programming 

a. branch on condition 

i. loop iteration (e.g., delay) 

ii. check bit 

iii. compare, looking for pattern (e.g., keycheck in Lab 22) 

b. pointers 

i. for speed 

n. for table reads and fills; need way(s) to tell whether table done 

c. stack: it works so automatically that you seldom need think about it; you 
do need to appreciate the difference between a subroutine CALL (useful 
for multiple use of one patch of code) and garden-variety branch or jump 

d. exception response: this is much less important, for our purposes; but it is 
not hard to understand, once you understand the use of the stack in an 
ordinary subroutine call. 
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Chapter 10, 11: Microcomputer/Microprocessor Jargon and 
Terms 

These two chapters are especially rich (especially annoying) in their use of acronyms. It's 
hard not to imagine that the manufacturers sometimes start with a clever acronym, and then 
demand that the research department invent something to fit it ('RIOT', for example, an old chip 
that included Ram, I/0 and a Timer. Which came first: the riot or the chip?) So, this list of 
terms includes some substantial notions and some terms that are no more than names. 

absolute addressing 

access time 

asynchronous bus 

bus 

dtack* 

EEPROM 
EPROM 

exception 

interrupt 

PROM 
RAM 

ROM 

vector(s) 

contrasted with relative addressing: address specified as a number rather 
than as a distance from the present location of the computer's program 
counter. 

time a memory takes to deliver data after a stable address is applied. 
Typical values 25 to 200 ns. Sec. 11.12. 

a misnomer, really; the Text's term, default wait, is better. Means only 
that the CPU proceeds only when told to do so by the things it talks to 
and listens to (the 68000 uses dtack* to achieve this result). Sec. 10.14. 

a set of lines connected to many points in a circuit: address and data 
buses are the most important; "control bus" is a term used less widely; 
power buses are used in all of electronics, not just digital. 

68000 input signal, 'DataTransferAcknowledge.' (This signal is a 
68000 special, so may deserve a definition.) It tells the processor to 
proceed. It is roughly equivalent to an active-high signal that one might 
call 'Wait.' 

ElectricallyErasablePROM. 

ErasablePROM; means more than that: the name is reserved for the 
device that is erasable by ultra-violet light. 

Motorola's peculiar term for all sorts of events (hardware and software) 
that cause a break in ordinary program execution and diversion to a 
response routine. 

process by which a processor allows a hardware signal to cause a break 
in ordinary program execution and diversion to execution of an 
'interrupt response routine.' 

the son of ROM that a user can load. 'Programmable ROM.' 

a memory one can write to easily. Contrasted with ROM, a memory that 
can be loaded only with difficulty. RAM is an acronym for 'Random 
Access Memory.' But that's unfortunate, since all semiconductor 
memories are Random Access Memories (except bubble memories and 
FIFOs). (Re: memories of all sorts, see Sec. 11.12.) 

Read Only Memory: this acronym fits. It is a memory that one write to 
only rarely and with considerable effort; true ROM, when contrasted 
with PROM, can be loaded only at the manufacturing stage. Holds data 
when power is removed, so useful for bootstrap program of computer. 

the noun refers to a stored value that steers program execution to a 
particular destination. The 68000 uses nearly 1K of low memory space 
to store such values. The 'Reset vector,' stored at locations 0-7, loads 
stack pointer and program counter, for example. 
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APPENDICES 

A. Equipment and Parts 

B. Selected Data Sheets 
2N5485 JFET 
74HC74 dual D flip-flop 
AD7569 8-bit ND, D/A 
68008 execution times & timing diagrams 
25120 write-only-memory (Note: add salt) 

C. Schematic of lab computer: 'Big Picture' 

D. Pinouts: parts used in lab exercises 

APPENDIX A: EQUIPMENT AND PARTS LIST 

EQUIPMENT 
Suggestedforeach setup 

Device Description 

Scope 
Tektronix 2225 dual channel, 50 MHz 

Func. Gen. 
Krohn-Hite 1400 sine, triangle, square, logic 

level; sweep; to 3 M Hz 

DVM 

Beckman DM25L 3 1/2 digit 

VOM 
Simpson 260-8P multimeter with overload 

protection (essential!) 

Power Supply 
B & K Precision 1630 

0-30V, 3A, linear 

Breadboard (Powered) 
Global Specialties PB503 

3 supplies (+SV, ±15V), function 
generator including logic level; 
debounced switches, 8 LED 
indicators 

Breadboards, not powered 
Global PB-105 set of six strips, mounted 
Global UBS-100 single strip 

Logic Probe 

(Beware of cheap imitations. 
We've tried them! Make sure 
that any mounted strips are 
screwed down to a base, not 
taped or glued.) 

OK PRBSO O.K Industries: 50 ns glitch 
capture 

or 
HP545A (Hewlett Packard: SOns glitch 

capture; easier to use;$$$!) 

Resistor Substitution Box 
RD 111 (Contact East) 

H1 to llM.Q in 10 steps; ±1% 
or 
Ohmite Ohm-Ranger 3420 

Capacitor Substitution Box 
Ohmite 3430A Cap-Ranger 

Resistor Kit 

100 pF to 11.111 j.I.F in lOOpF 
steps; ±2% accuracy 

Ohmite CAB-54 
"little devil" 

1/4-watt carbon composition; 100 
to lOM.Q 
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Keypad 

CUSTOM: Note: the schematic is included 
in this Student Guide (it follows Lab 15). 
The authors have made manufacturing 
arrangements, and can supply complete 
keyboard units. Write or call Paul 
Horowitz, Harvard Department of 
Physics, Lyman Laboratory, Cambridge, 
MA 02138: tel. (617)495-3265. 

Tools 

pliers: chain nose 
C.K 3772-lH 

wire stripper 
e.g., Contact East cat. no. 100 

PARTS 
Quantities 

Odds and Ends 

patch cords 

BNC cables 

BNC tees 

"stacking banana": black, red 
E.g., Pomona B-18 

BNC-to-minigrabber converters 

Equipment: one for the laboratory 

Palladin PAllOO 

(your choice) 

ribbon cable stripper (Contact 
East): hugely helpful in the 
microprocessor labs 

a frequency counter: occasionally 
very helpful 

Each setup needs just one of each of the parts listed below, except where specifically noted. This rule does 
not apply to resistors and capacitors, as may be obvious. 

Suppliers 

We have a couple of favorites to recommend: for tools and supplies, Contact East, N. Andover, MA ((508) 
682-2000); for many other parts, Digikey, Thief River Falls, MN ((800) 344-4539). Both arc fast and 
efficient: take orders quickly and ship promptly. 

Passive 

Diodes 

PART NO. DESCRIPTION 

1N4004 silicon diode 

1N914 

1N746 

1N748A 

1N749A 

1N751A 

1N752 

1N5817 

silicon diode (Quantity: ::Z: 4 per 
setup) 

zener, 3.3V 

zcner, 3.9V 

zcncr, 4.3V 

zener, 5.1V 

zencr, 5.6V 

Schottky, 1 A. (Quantity: 2 per setup) 

LEOs 

HLMP-4700 
Red, low current 

HLMP-4719 
Yellow, low current 

HLMP-3950 

Lamps 

#47 
#344 

Green, high efficiency 

lamp 
lamp 

Inductor 

lOmH: (E.g., Mouser 431J310) (Quantity: 2 

Transformer 

6.3 v, C.T. 

Switches 

pushbutton 

toggle 

DIP: 
4-position 

4-position 

Microphone 

25LM045 

per setup) 

transformer, lA, with power cord, and 
banana jacks on secondary side 

Panasonic: EVQ-PXR04K (Digikcy 
Cat.# P9950) 

spdt (may substitute DIP toggle, 
below) 

toggle spdt: Graybill 76STC04 
(alternative to single toggle 
suggested above) 

slide 

electret: Panasonic (Digikey #P9931 
or Mouser #25LM045) 
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Cable 
Pacer-Harvard-48 

custom order: ribbon cable, #22 solid 
conductor, 48 conductors; 8 colors repeat, 
black through violet. 100-foot minimum. 
Order from Spectra Strip Co., 720 
Sherman Ave., Hamden, CT 06514; tel. 
1-800-57-CABLE. This is a special order 
handled by a distributor, Pacer 
Electronics, Woburn MA. 

A cheaper and less good alternative: (#24, 4 
conductors, random colors): Radio-Shack 
part no. 278-757. 

Heat Sink 

HS130 T0-92: Aavid 

Battery Holder 

BH2AA-SF 
battery holder, 2 AA: Memory 

Protection Devices 

12BC254 battery snap leads, 24 AWG solid 
(Mouser) 

Miscellaneous 
hookup wire 

IC Sockets: 

#22 AWG hookup wire, solid; 10 
colors, black through violet (e.g., 
Belden #8530, 100' roll) 

ICA·326·S·TG 

or 

32-pin screw machine socket, to 
protect HP data displays, whose 
pins are exceedingly fragile. 
(quantity: 2 per setup) (Robinson
Nugent) 

532AG llD Augat. 

Data Books 

40-pin sockets also do the job, but 
must be cut to 32 pins with a 
razor saw. These would be R-N: 
ICA·406·S·TG, or Augat: 
540AG11D. 

National Semiconductor 

Motorola: 

Linear Data Book (multiple volumes) 

Logic Data Books (inc! uding 
HCMOS) 

M68000PM/ AD 
programmer's reference manual 

M68008/AC 
programming card 

AD 1939R2 68008 hardware manual 

COMPONENTS 
Capacitors 
Ceramic 

zsu 0.01 
0.1 

CKOSBX
-IOOK 10 pF 
-470K 47 pF 
-lOlK lOOpF 
-221K 220pF 
-331K 330pF 
-471K 470pF 
-561K 560pF 
-681K 680pF 
-102K 1 OOOpF 

Mylar 

0.001 
0.0033 
0.01 
0.1 
0.33 

Tantalum 

axial-lead SOY or lOOV (=polyester) 
for example Comell-Dublier WMF 

CS 13B-type (axial lead): 
1 !!F 35V 
4.7!!F 35V 
lS!!F 20V 
68!!F 15V 

Electrolytic 

SOO!!F aluminum electrolytic, 25V 

Potentiometers 
lOOk single-turn 1/2-W (e.g., Bourns 

1M 

Resistors 

3352W (knurled knob) or 3323 
(screwdriver slot)) 

These are in addition to the standard 5% 
selection suggested under equipment. Few are 
required in the laboratory exercises; we suggest 
these values as occasionally useful. 
1% 

1/4-watt metal film (e.g., RN55D type) 
100 ohms, lK, 2K, lOK, 49.9K, lOOK, l.OM, 

lO.OM 
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ACTIVE DEVICES 

Transistors 
bipolar 

2N4400 
2N3904 

2N3906 

2N5962 

NPN, power 

NPN, small-signal (quantity: at least 
4 per setup) 

PNP, small-signal 

NPN superbeta 

LPTlOO phototransistor (Siemens) 

FET 
2N5485 JFET (quantity: at least 2 per setup) 

2N3958 JFET, matched pair 

1N5294 JFET, current source, 0.75 rnA 

RFP4N05L power MOSFET, low threshold: IRL 
510 (IR) is equivalent 

VN0104N3 power MOSFET, n-channel 
(Supertex) 

VP0104N3 power MOSFET, p-channel 
(Supertex) 

Miscellaneous 

MCR218-4 silicon-controlled rectifier (SCR), SA, 
T0-220 package (Motorola) 

INTEGRATED CIRCUITS 

Linear 

CA3096CE bipolar transistor array: npn, pnp 

CD4007 A or CD4007UB MOSFET array (RCA 
CA3600 is the same part) 

LM311N comparator 

TLC372CP comparator, single supply 

LM723CN voltage regulator 

LM317H voltage reg, adjustable 

LM358N dual op amp, single supply 

LM385-2.5 voltage reference 

LF411CN op amp, FET input 

LM741CN op amp 

LM78L05ACZ voltage reg, 3-term, T0-92 

ICM7555IPA timer/oscillator (CMOS) 

MF4CN -50 switched-capacitor 4-pole 
Butterworth low-pass filter: (quantity: 2 per 
setup) 

DG403DJ analog switch (Siliconix) 

Digital 
TTL 

74LSOO 

74LS469 8-bit up/down counter: National only: 
(Quantity: 2 per setup) 

74LS502 8-bit successive-approximation 
register: National only 

CMOS:HC 

74HC-
-OO 

-04 

-14 

-74 

-112 
-125 

-161 

-175 
-541 
-4040 
-4046 

74HCT
-02 

-08 

-10 
-27 

-32 

-138 

-574 

NMOS 

quad NAND 
hex inverter (general utility; required 

in no lab) 

hex Schmitt Trigger inverter 

dual D flip-flop 

dual J-K flip-flop 

quad 3-state buffer 

4-bit binary counter, jam ckar 
(general utility; required in no lab) 

quad D flops 

octal 3-state buffer 

12-stage ripple counter 

phase-locked loop 

quad NOR 

quad AND 

triple 3-in NAND 

triple 3-in NOR 

quad OR 

1-of-8 decoder 

octal D register, 3-state (general 
utility; required in no lab) 

68008-PS CPU, 8 MHz (Motorola) 

Miscellaneous 

HM6264-LP-12 or equivalent 
8K x 8 SRAM, 120ns, low-power 

AD558JN D/A, single supply, with register 

AD7569JN ND, D!A, microprocessor
compatible 

HP5082-7340 

F5C-8MHz 

hexadecimal display with decoder & 
latch: (Quantity: 8 per setup) 

Fox 8 MHz oscillator, 45/55% duty 
cycle 

Parts not generally required, but useful for projects 

MC1408 or AD5724 
8-bit multiplying D/A 

SC-02 or SC-01 
speech synthesizer (Votrax: SC-01 

discontinued; SC-02 from Artie 
Technology, Rochester, Michigan) 

LM386N-1 power amplifier (single-supply, mini
dip): will drive 8-ohm speaker 
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APPENDIX B: SELECTED DATA SHEETS 
2N5485 JFET 

n-channel JFETs H 
Siliconix 

designed for Performance Curves NH 
• • • See Section 4 

• VHF/UHF Amplifiers BENEFITS 

• Mixers • Low Cost 

• Completely Specified for 400 MHz 

• Oscillators Operation 

• Low Error Analog Switch 

• Analog Switches Very Little Charge Coupling 

*ABSOLUTE MAXIMUM RATINGS (25°C) 
Crss < 1.0 pF 

Drain-Gate Voltage .......... ............... ' .. .25 v Plastic 

Source Gate Voltage ......... .............. . .... 25 v T0-92 

Drain Current ............................... 30 mA See Section 6 

Forward Gate Current ................. .. ' ..... 10 mA 
Total Device Dissipation@ 25°C ... ....... . . . .. 360 mW 

Derate above 25° C ..................... 3.27 mwrc 
Operating Junction Temperature Range ..... -65 to +135°C 

0~: TD I 
Storage Temperature Range . . . . . .. ....... -65 to +150°C 0 c 

Lead Temperature 5 c \, G 
s 

I 1 I 16" from case for 1 0 seconds) . . . . .. 240°C Bottom View 
0 ... 

*ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Source & Dr•rn 
lnlerchengeeble 

CharacteristiC 2N5484 2N5485 2N54S6 Un1t Test Condit1ons 
Min Mox Mm Max Mm Max 

1 -1 0 -1 0 -1 o I 
I ---::- s IGSS Gate Reverse Current cA VGso-20V.VosoO 

1 ___2. T -200 -200 -200 TA = -lOO~C 

Gate-Source Breakdown 
3 A BVGSS Voltaqe -25 -25 -25 IG = _, 11A, v 0 s =a 

I-T v 

4 I 
V , Gdte-Sourc:e Cutoff 

-0.3 -3 0 -0.5 ·-' 0 -2 0 -6 0 i v 0 s=15VIo-= 10 nA GSiolfl Voltage 

'sc loss SaturatiOn Orarn Current 1 0 50 40 10 8 0 20 mA Vos = 15 v VGs =a (Note i\ 

6 
Common-Source Forward 

3.000 6.000 3.500 7 000 4.000 8 000 9fs Transconductance 
- f-o 1kHz 

7 9o> 
Common-Source Output 
ConcJuctance 50 60 '51 

-
8 Common-Source Forward 2.500 I I= 100MHz 

- Re(Yfsi Transconductance 9 3.000 '3.500 f-oo4QQMHz 
-

I 
!Jmhos 

10 Common-Source Output 75 fo 100~Hz 
- Re{Yos' Conductilnce 11 100 100 Vos=l5V,IJGS"0 I =400 MHz 
-

12 Common-Source Input 100 f"" 100 MHz 
-o Re{YisJ Cvnductance 
~y 1 000 1 000 f = 400 MHz 

14 N CISS 
Common Source Input 

50 50 50 
_A 

Capac1tance 

15 M 
Crss 

Common-Source Reverse 
1 0 10 1 0 pF f = 1 MHz 

_I Transfer Capac1tance 

16 c Coss 
Common-Source Output 

2 0 20 20 
Capac1tance 

-
17 2 5 2.5 25 vos=1sv VGS = 0. RG = 1 Mil 1 = 1kHz 

18 3.0 vos"" 1sv Jo ~ 1 mA. RG- " 
119 NF No1se F1gure :.:. f= 100MHz 

2.0 2.0 
1-

I 
Vos=lsv. IQ = 4 mA RG o I dl 

I~ 40 4 0 
dB 

t-400MHl 

21 Common-Source Power 16 25 Vos= 1sv lo = 1 mA 

122 Gps f = lOOMHz 
Ga1n 18 30 18 30 

123 10 20 10 20 
Voso 15V. lo = 4 mA 

f=400MHz 

• JEDEC reg1stered data NH 

NOTE' 

1 Pulse Test PW 300 JJ.s, dutv cycle.:::;;;; 3% 

2N5485 n-channel JFET 
reproduced with persmission of Siliconix, Inc. 



DG400-405 
Low-Power- High-Speed 
CMOS Analog Switches 

FEATURES 

• ± 15 V Input Range 

• ON Resistance < 35 n 
• Fast Swttching Action 

toN < 150 ns 
toFF<100ns 

• Ultra Low Power 
ReqUJrements (Po < 35 ';J-W) 

• TTL, CMOS Compatible 

DESCRIPTION 

BENEFITS 

• Wide Dynamic Range 

• Low Stgnal Errors and 
Distortion 

• Break-Before-Make 
Switching Action 

• Stmple Interfacing 

APPLICATIONS 

• High Performance Audio 
and Video Switching 

• Sample and Hold Ctrcuits 

• Battery Operatton 

The DG400 family of monolithic analog switches 

were designed to provtde preciston, htgh 

performance switchmg of analog signals. 
Combtntng low power (< 35 J.1W) wtth htgh speed 

(tON < 150 ns), the DG400 series tS ideally sutted 

for portable and battery powered tndustrial and 

military applicattons. 

Each switch conducts equally well 1n both directions 

when ON. and blocks up to 30 volts peak-to·peak 

when OFF. ON resistance IS very flat over the full 

±15 V analog range, rivaling Ji='ET performance 

without the Inherent dynam1c range limitations. 

Built on the Sillconix proprietary high voltage silicon 

gate process to achieve high voltage rating and 

supenor switch ON/OFF performance, break· 

before·make is guaranteed for the SPOT conftgur· 

ations. An ep1taxial layer prevents latchup. 

The six dev1ces in thiS series are differentiated by 

the type of switch act1on as shown 1n the functional 

block diagrams. Package options 1nclude the 16-pm 

plast·ic, CerOIP and LCC package. Performance 

gradeS include indUStrial, 0 SUffiX (-4Q tO 85°C), 
and military, A suff1x (-55 to 125°C). Additior"lally. 

the DG403 and OG405 are available in the narrow 

body surface mount package, S0-16. 

FUNCTIONAL BLOCK DIAGRAM, PIN CONFIGURATION AND TRUTH TABLE 

s, 

Top VIew 

Order Numbers: 
CerDIP: OG403AK 

DG403AK/883 

Plastic: DG403DJ 

Leadless Chip Carrier 

' N D N $ N c 1 c 1 1 

03,83 2 

'"" •v-
83 5 7 GND 
NC 6 Top View 6 NC 
84 7 5 '1.. 
D4 a 4 V+ 

g 10 11 1213 

N D N S I 
c 2 c 2 rJ 

2 

Order Number· 
DG403AZ 

DG403 

SO Package 

Top VIew 

Order Number: 
DG403DY 

ELECTRICAL CHARACTERISTICS a 

PARAMETER 

SWITCH 

Analog Signal Range c 

Dra1n-Source 
ON Resistance 

Delta Drain-Source 
ON ReSIStance 

Switch OFF Leakage 
Currer.! 

Channel ON 
Leakage Current 

INPUT 

Input Current with V1N 
LOW 

Input Current with V1N 
HIGH 

DYNAMIC 

Turn-ON Time 

Turn-OFF Time 

Break-Before-Make 
T1me Delay 

Charge Injection 

Off Isolation 

Crosstalk 1 

(Channel-to-Channel] 

Source-OFF Capacitance 

Drain-OFF Capacitance 

Drain and Source ON 
Capacitance 

SYMBOL 

V ANALOG 

ros(ON) 

ll.rDS(ON) 

ls 1oFF: 

1----
IO(OFF) 

ID(ON) + 
ls(ON) 

'" 
I,H 

toFF 

to 

Q 

Cs(oFFl 

CD(OFF) 

CD(ON)+ 
Cs(ON) 

DG400-405 

A 0 
SUFFIX SUFFIX 

Test Conditions LIMITS 
Unless Otherwise Specltled:•f7=~-,---'--'-:..:....-.----

Vt"' 15 V 1-25oC 
V- "'-15 V 2=125,85"C 

3=-55.-40°C -55 to 125°C -40 to 85°C VL= 5 V 
GND = 0 V 

VIN = 2 4V. 0.8 V"' TEMP TYP d MINb MA>f MINb MAX
1 

UNIT 

-15 15 -15 15 

Vt = 13.5 V. V- = -13.5 V 1 20 35 45 
18 =-10mA.v0 =-z10V 2,3 45 55 

.n 
Vt = 16.5 V, V- = -16.5 V 3.0 30 3.0 

18 = -10 mA. v 0 = 5. 0.-5 v 2.3 5.0 5.0 

01 -0.25 0.25 -0.50 0.50 
Vt = 16.5 V, V- = -16.5 V -20 20 -20 20 
Vo= -15.5 V, Vs = 15.5 V 

Vo= 15.5 V.Vs= -15.5 V -.01 -0.25 0.25 -0 50 0.50 
-20 20 -20 20 nA 

Vt = 16.5 V, V-"' -16.5 V -0.4 0.4 -1.0 1.0 

v0 = Vs = :.+: 15.5 v -0.04 -40 40 -40 40 

VN Under Test= 0.8 v 
All Other= 2.4 v 1,2 .005 -1.0 1.0 -1.0 1.0 

M 
V1N Under Test= 2.4 V 

All Other= 0.8 V 1,2 005 -1.0 1.0 -1.0 1.0 

100 150 150 

RL = 300!1, CL = 35 pF 
See Figure 1 A 

60 100 100 

AL= 300!1, CL= 35 pF 20 10.0 10.0 DG402/DG403 

CL"' 10,000 pF 
60 100 100 pC 

Vg9 n= 0 V, ~n= O!l 

AL= 100!1, CL= 5 pF 
72 

f = 1 MHz 
dB 

Any Other Channel Switches 
RL= 100!1, CL= 5 pF 90 

f = 1 MHz 

12 

Vs= 0 v 
12 pF 

f = 1 MHz 

39 

DG403 dual spdt analog switch 
reproduced with persmission of Siliconix, Inc. 



DG400-405 
ELECTRICAL CHARACTERISTICS a 

Test Conditions LIMITS 

~ Siliconix 
~ incorporated 

Unless Otherwise Specified: 
1-25°C 

V+ = 15 V A D 
V-=-15V 2=125,85°C SUFFIX SUFFIX 

VL = sv 3=-55,-40°C -55 to 12S"C -40 to 85°C 

PARAMETER SYMBOL 
GND = 0 V 

YIN= 2.4V, 0.8 V 8 
TEMP TYPd MINb MAx" MlNb MAX UNIT 

SUPPLY 

1 0.01 
Positive Supply Current I+ 2.3 

1 -0.01 -1 -1 
Negative Supply Current 1- 2.3 -5 -5 

V+ = 16.5 V, V- = -16.5 V J1A 
YIN = 0.0 or 5.0 V 1 0.01 

Lagle Supply Current IL 2,3 

1 -0.01 -1 -1 
Ground Current laND 2,3 -5 -5 

NOTES' 
a. Refer to PROCESS OPTION FLOWCHART for additional information. 
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, Is used In 

this data sheet. 
c. Guaranteed by design, not subject to production test. 
d. Typical values are for DESIGN AID oNLY, not guaranteed nor subject to production testing. 
e. V 1N =Input voltage to perform proper function. 
f. Crosstalk performance Is Improved to 110 dB (typ.) with LCC package. 

ABSOLUTE MAXIMUM RATINGS 

V+ to V-

GND to V-

VL to v-
Digltal lnputs1 V5 , V 0 . 

44V 

25V 

(GND- 0.3 V) to 44 V 

(V-) -2 V to (V+ plus 2 V) 
.. or 30 mA, ·whichever occurs first 

Current (Any J!""ermlnal) Continuous . 

Current, S or'[) ~,Pulsed 1 ms 10% dutyJ 

Storage Temper.a't!Ure {A Suffix) 
(D Suffix) 

Operating Ternperature (A Suffix) 
{D Suffix) 

. 30 mA 

100 mA 

.. -65 to 150"'C 
-65 to 125"'C 

... ~55 to 125"'C 
. -40 to asoc 

Power Dissipation (Package)* 
16-Pin Plastic DIP.. 450 mW 
16-Pin CerDIP* • • 900 mW 
20-Pin LCC* • • • 750 mW 
16-Pin so••• • • 600 mW 

All leads welded or soldered to PC board. 
Derate 6 mW/°C above 75°C 
Derate 12 mW/°C above 7S°C 
Derate 10 mW/°C above 7S°C 

• • • u Derate 7.6 mW/°C above 75°C 

1 Signals on Sx, Dx or INx exceeding V+ or V- will be 
clamped by internal diodes Limit forward diode current to 
maximum current ratings . 



~National 
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MM54HC7 4/MM7 4HC7 4 
Dual D Flip-Flop with Preset and Clear 
General Description 
TheM' 4HC74/MM74HC74 utilizes microCMOS Technol
ogy, 3.- ,n1cron silicon gate P-well CMOS, to achieve oper
ating speeds s1milar to the eqUivalent LS-TTL part. It pos
sesses the high noise immunity and low power consumption 
of standard CMOS mtegrated c1rcuits, along with the abihty 
to drive 10 LS-TIL loads. 

This flip-flop has independent data, preset, clear, and clock 
1nputs and Q and 0 outputs. The log1c level present at the 
date mput is transferred to the output dunng the positive-go
mg transition of the clock pulse. Preset and clear are Inde
pendent at the clock and accomplished by a low level at the 
a ro nate m ut. 

Connection Diagram 
Dual·ln-Line Package 

fcc CLRl " CLKl PR2 

TOP VIEW 

MM54HC74/MM74HC74 

54HC74 (J) 74HC74 (J,N) 

Logic Diagram 

" 

The 54HC/74HC log1c family 1s functionally and pinout com· 

patible with the standard 54LS/74LS log1c family. All inputs 

are protected from damage due to stat1c discharge by inter· 

nal diode clamps to Vee and ground. 

Features 
• Typical propagation delay: 20 ns 

• W1de power supply range: 2-6V 

• Low qUiescent current: 40 p.A maximum (74HC series) 

• Low mput current: 1 p.A max1mum 

• Fanout of 10 LS·TTL loads 

Truth Table 

Inputs Outputs 

PR CLR CLK 0 Q Q 

L H X X H L 

H L X X L H 

L L X X H" H" 

H H i H H L 

H H i L L H 

H H L X ao Oo 

Note: QO .. tne level of Q before the 1nd1cated mput cond1-
t•onswereestebhshed 
• Th1s configuratiOn IS nonstable. that IS. rt w1ll not persiSt 
when preset and clear Inputs return to their 1nactove (h1gh) 
level 

Absolute Maximum Ratings (Notes 1 & 21 Operating Conditions 
Supply Voltage (Vee) -0.5 to+ 7.0V Min Max Units 

DC Input Voltage (VtN) -1.5toVcc+1.5V Supply Voltage(Vec) 2 6 v 
DC Output Voltage tv our) -O.StoVcc+O.SV DC Input or Output Voltage Vee v 
Clamp Diode Current (1 1K. lol() ±20mA 

(V\N,Vourl 

DC Output Current, per pin (lour) ±25mA 
Operating Temperature Range(T A) 

MM74HC -40 +85 ·c 
DC Vee or GND Current. per pin (Icc) ±SOmA MM54HC -55 +125 ·c 
Storage Temperature Range (T STGl -65°Cto +150°C Input Rise or Fall Times 

Power Dissipation (Po) (Note 3) 500mW (tr,ttl Vcc=2.0V 1000 ns 

Lead Temperature (T tJ (Soldering 10 seconds) 26o·c Vcc=4.5V 500 
Vcc~6.0V 400 

DC Electrical Characteristics (Note 4) 

TA=2SOC 
74HC 54HC 

TA= -40 to BSoC r ... =-55to12SOC 
Symbol Parameter Conditions Vee Units 

Typ Guaranteed Limits 

v,H Mimmum H1gh Level 2.0V 1.5 1.5 1.5 v 
Input Voltage 4.5V 3.15 3.15 3.15 v 

6.0V 4.2 • 4.2 4.2 v 

v,c Max1mum Low Level 2.0V 0.3 0.3 0.3 v 
Input Voltage 4.5V 0.9 0.9 0.9 v 

6.0V 1.2 1.2 1.2 v 

VoH Minimum High Level V1N = V1H or Vll 

Output Voltage llourl < 20 ~A 2.0V 2.0 1.9 1.9 1.9 v 
4.5V 4.5 4.4 4.4 4.4 v 
6.0V 6.0 5.9 5.9 5.9 v 

V1N = V1H or Vll 

l1ourl<4.0 mA 4.5V 4.3 3.98 3.84 3.7 v 
ilourl s;; 5.2 mA 6.0V 5.2 5.48 5.34 5.2 v 

VoL Max1mum Low Level V1N = VtH or VIL 

Output Voltage llourl <20 ~A 2.0V 0.1 0.1 0.1 v 
4.5V 0.1 0.1 0.1 v 
6.0V 0.1 0.1 0.1 v 

V1N=V1H or VIL 

l1ouris;;4.0 mA 4.5V 0.2 0.26 0.33 0.4 v 
llouTI s;; 5.2 mA 6.0V 0.2 0.26 0.33 0.4 v 

liN Maximum Input V1N =Vee orGNO 6.0V ±0.1 ±1.0 ±1.0 ~A 

Current 

Icc Maximum Quiescent V1N =Vee or GND 6.0V 4.0 40 80 ~A 

S~.tpply Current louT=01-1-A 

Note 1: Absolute Max1mum Ratin9s are those values beyond which damage to the device may occur. 

Note 2: Unless oth1Uw1se spac1fied all voltages are referenced to 9round. 

Note 3: Power DISSipatiOn temperature derating - plastic "N" package· -12 mWrC from 65"C to 85"C, ceram~e "J" pac1<a9e: -12 mwrc from 
, oo·c to 12s·c. 

Note 4: For a power supply of SV ± 10% the worst case output voltages (VoH. and VoL) occur for HC at 4.5V Thus the 4 SV values Should be used when 
des1Qn1ng w1th this supply. Worst case v1H and V1L occur at Vee •5 SV and 4.5V respectively. (The V1H valueatS.SV is 3.85V) The worst case leakage current (liN· 
Icc. and loz} occur for CMOS at the higher VQitage and so the 6 ov values should be used. 

74HC74 dual D flip-flop, edge-triggered 
reproduced with permission of National Semiconductor Corp. 
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AC Electrical Characteristics Vcc~sv, TA~2S"C, c, ~15 pF, 1,~t,~s ns 

Symbol Parameter Conditions Typ Guaranteed 
Units 

Limit 

I MAX Max1mum Operat1ng 50 30 MHz 
Frequency 

IPHL• IPLH Max1mum Propagation 16 30 ns 
Delay C!ock to 0 or 0 

IPHL· IPLH Max1mum Propagat1on 25 40 
Delay Preset or Clear to 0 or 0 

IRE:M M1n1mum Removal T1me. 
Preset or Clear to Clock 

ts M1n1mum Set Up T1me 20 ns 
Data to Clock 

IH M1n1mum Hold T1me 

I Clock to Data 

tw M1n1mum Pulse Width 16 ns 
Clock, Preset or Clear 

AC Electrical Characteristics c, ~so pF, 1,~t1 ~6 ns 1"nless o1hecwose specit1edl 

Symbol Parameter I Condit<ons 

74HC 54HC 

Vee f-::-T·-·-~T2_5_·c_L_-'T ·~~--:-•_o _to_a_s_·c___.__T~•-~_-_s_s_to_t_2_s·_c---j Units 

Typ Guaranteed limits 

fMAX I Ma"m"m Opecatmg 

I 
2.0V 

Frequency 4.5V 
6.0V 

IPHL· IPLH I Max1mum Propagation 12.0V 88 

1 
Delay Clock to 0 or 0 4.5V I 18 

6 ov 15 

IPHL· IPLH Max1mum Propagat1on 2 ov 98 
Delay Preset or Clear 4.5V 30 
To 0 or 0 6.0V 28 

IREM 

1 

M1n1m"m Removal T1me 2.0V 
Preset or Clear 4 5V 
To Clock 6.0V 

ts I M1n1m"m Set Up T1me i 2 ov 
Data to Clock 4.5V 

6.0V 

IH Mm1mum Hold T1me 

I 
2.0V 

Clock to Data 4 sv 
6.0V 

tw Mm1mum, Pulse W1dfh 2.0V 30 
Clock, Preset or Clear 4.5V 9 

6.0V 

tTLH· tTHL ~ax1mum Output 2 ov 25 
R1se and Fall T1me 4.5V 

6.0V 

tr,tt Max1mum Input R1se and 2.0V 
Fall T1me 4.5V 

6.0V 

Gpo Power DISSipation (per flip-flop) 
80 CapacJtance (Note 5) 

c,N Maximum Input 
Capac1tance 

27 21 
32 25 

175 221 
35 44 
30 37 

230 290 
46 58 
39 49 

25 32 
5 6 

5 

100 126 
20 25 
17 21 

BO 101 
16 20 
14 17 

75 95 
15 19 
13 16 

1000 1000 
500 500 
400 400 

10 10 

18 
21 

261 
52 
44 

343 
69 
58 

37 
7 

149 
30 
25 

119 
24 
20 

110 
22 
19 

1000 
500 
400 

10 

MHz 
MHZ 
MHz 

ns 

ns 
ns 

ns 
ns 

ns 

pF 

pF 

Note 5: Gpo determines the no load dynamic power consumptiOn Po=Cpo Vce2 1-+lce Vee and the no load dynamoc current consumpt1011, 
ls=Cpo Vee f-+lce 

Note 6: Refer to bacK of th1s section lor TypiCal MM54/74HC ACSw!tchmg Waveforms and Test CirCuitS 



.. ~LOJl!J
.... DEVICES Complete, 8-Bit Analog 1/0 System 

FEATURES 
2JLS AOC with Track/Hold 
1 fLS DAC with Output Amplifier 
On·Chip Bandgap Reference 
Fast Bus Interface 
Single or Dual 5V Supplies 

GENERAL DESCRIPTION 
The AD7569 IS a ..:omplctc, R-bit, analog 1/0 system on a ~mgk 
monolith!..; chip. It con tams a high-<;pccd succcs~JVC approximation 
ADC with 21-1~ convcr:-.ion time, a track.' hold wnh 200kHz 
bandwidth, a DAC and output buffer amplifier Wllh Il-ls scttlmg 
time. A tcmpcraturc-compcmatcd 1.25V bandgap reference 
provides a precJsJon reference voltage for the ADC and the 
DAC. 

A choiCe ol analog input 'output range~ ts avatlablc. lbing a 
supply voltage of + SV, input and output range~ of zero to 
1.25\l and zero to 2.5 volts may be programmed using the RANlJE 
input pm. Using a _,_ SV ~upply, btpolar range~ of -±. l.2"V or 
.:!.2.5V rna~' be programmed 

D1gital interfat:ing is via an S-bll 1.'0 port and ~landard micro
proce:.sor control lmc:-.. Bu:-, interface timing i:-. extremely- fa:-.t, 
allowmg easy connection to all popular H-blt IlliCroproce:-,~or~. A 
separate start convert line controls the track/hold and ADC to 
give precise control of the sampling period. 

The AD7569 is fabncated in Linear-Compatible CMOS 
(LC1MOS), an advanced, mixed technology process combining 
precisiOn bipolar circuits wllh low-power CMOS logic. The part 
is packaged in a 24-pin, 0.3" wide "skinny" DIP and ii> also 
available in plastic leaded chip carrier (PLCC) and t:eramic 
leadless chip earner (LCCC). 

Functional Block Diagram 

InformatiOn furn1shed by Analog Devices is bel1eved to be accurate 
and rel1able. However, no responsibility 1s assumed by Analog Dev1ces 
for its use; nor for any Infringements of patents or other rights of third 
pgrties which may result from its use. No license is granted by implica
tion or otherwise under any patent or patent rights of Analog Dev1ces. 

PRODUCT HIGHLIGHTS 
I. Complete Analog 1/0 on a Smglc Chip. 

The AD7569 provides everything nece'>sary to mterfac.: a 
microproce~sor to the analog world. ~o external components 
or u::.er tnms arc reljmred, <Jnd the overall accuracy of the 
::.ystem IS tightly ::.pecified, cltmmatmg the need to calcu!<Jte 
error budget:. from individual component :-,pccification:-.. 

2. Dyn<~mic Speufic<Jtions for DSP lher:-.. 
In addi!ion to the tradition<JI ADC .md DAC i>pccificauons 
the AD756(} is :-.pecif1ed for AC parameters, including signal-to
noi:-.e ratio, di:-.tortion and input bandwidth. 

3. Fast MKroproces~or Interlace. 
The AD7569 ha~ bus mtcrlace llmtng compa\Iblc with <~11 

modern microprocessors, with bus a..:ccss and rclmljmsh 
times le:-,s than 75ns and Wrnc pulse wtdth less than SOns. 

4. I.ow Power. 
Thanh to the ..:ombimtion of high-speed linear circuits with 
low-power CMOS logi..:, the AD7569 offeri> power consumption 
less than 60m\X'- con:-.Ider<Jbly lower than any system of 
comparable performance. 

One Technology Way; P. 0. Box 9106; Norwood, MA 02062·9106 U.S.A. 
Tel: 617/329-4700 Twx: 710/394-6577 
Tel•x: 924491 Cables: ANALOG NORWOODMASS 

AD7569 8-bit AID, D/A 

DAC SPECIFICATIONS 
(V00 = + 5V ± 5%; Vss1 = RANGE = AGNDDAC = AGNDADc = DGND = OV: Rt = 2ki t, C1 = lOOpF unless otllerwise stated} 

(AIIspecificatloosTm.,toT"'""unlessotllerwisestated.} 
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ADC SPECIFICATIONS 
{V00 == +5V ±5%, Yss1 ==RANGE== AGNDDAc """AGND.u.c = DGNO = OV, lelA= SMHzextemalunlessotherwrse stated) 
(AllspecrficatJonsT,..ntoT"""unlessotnerwrse:rtated.) 
SpeclficatJonsapplytoModellnterface 

AD7St.9J' AD7~h9K 

P.u.lmeter AD7~69A AD7569B 
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TIMING CHARACTERISTICS1
(SeeF;gures8,911I;V00 = 5V ±5%,V~ = 0Vor-5V±5%) 

l.imLt.u L.mutat 
LliDIIJ! r"""' rm~- I'm.,.. Tm.,. 

Parameter !5°CtAliGr.J.de~l (j,K,A,B(7r,.de,) (S,Ttir.lde.-,J 

DAC l'unJng 
Sl! HU 'J(J 

I) u 
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... TF ·--t 
DGND DGND 

b. Hrgh-Z to V01 

Figure 1. Load Circuits for Data Access Time Test 

ABSOLUTE MAXIMUM RATINGS 
V1m to AGNDoAt: or AGND,\1)( 
V00 to DGND 
Vm, to V-.;.., 
AGNDnAc or AGND/\ 1)( to DGND 
AG!';Dt>AL to AGNDAt)( 
Logic Voltage to D(;ND 
CLK Input Voltage 10 f)(IND 

Von lo AGND 1
0 Ar 

VtN to AG'!';DAJ)( 

- 0.3V, -• 7V 
0_3V, + 7V 

0.3V, • 14\' 
0.3V, V nD + 0.3\' 

+ sv 
o.3V, v [)[) + o . .n' 

-o.w, Vni> t 0.3V 
V..,~ 0.3V, V[)n+O. 1V 

v..,.., -o.:w, Vn]) t o.Jv 

Umt~ fe'>t CondJtLUn\ Commt:nh 
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DBN-t 

10pF 

~ DGND 

b. VOL to Hrgh-Z 

Figure 2. Load Circwts for Bus Relrnqwsh Trme Test 

Power Dt~s1pation cAny Package) to + 7S"C 450mW 
Derate'> above 75 C by 6mW/"C 

Operatjng Temperature Range 
Commcrual IJ,K) 0 to +7WC 
lndustnal (A,B) - ZS'·C to -+ XS"C 
Extended (S,T) - ssnc to +tzsuc 

Storage Temperature Range 65'C to+ \50°C 
Lead Tempcraturc (Soldcring, lO Sees) +- 300"C 

may eau~e 

permanent damage to the device. Th!'> '' .1 >.tre\~ luno.:twna1 
operatL<m nf the devLLC at tho~e !ildll'ated 
m the ()perJtJOn~l sectLlHI'> of tlus J\ nut Jmp!Jcd bxposun: to 
ah~olute maxLmiHn ratmg condmon~ lor extended penod' may allcd dev1ce 

rdJabJl!fv 

CAUTION1----------------------------------------------------
WARNING!~ ESD (Elcctro-Static-Dt~charge) ~cnsinve dcv1ce The digital control input~ are zcncr protected; 

however, permanent damage may occur on unconnected device~ ~UbJcct to h1gh energy electro
static field~. Unused dcvio..:es mu\t tx: slored m conducll\'e foam or shunts. fhe protective foam 
should be diM.:hargcd to the destmat10n socket before devices arc removed. ~~ .. , ...... ~. 



PIN CONFIGURATIONS 

DIP PLCC 

PIN FUNCTION DESCRIPTION 
(Pin Nos as Per DIP Pin Configuration) 

PIN MNEMONIC DESCRIPTION 

AGND!JA( Analog Ground for the DAC Separate 
ground return path'> arc prov!l.icd 
for the DAC and ADC to minimuc 
cro~~t:dk. 

VmrJ Output Voltage. Th1~ i~ the huffcrcd 
output voltage from the DAC. Four 
d1fferent output voltage ranges can he 
achieved (~cc Table I). 

Yss Ncgauvc Supply Voltage (- SV for dual 
supply or OV for single '>upply). This 
pm 1~ also used with the RANGE pin 
w select the different inpu(!output 
ranges and changes the data format 
from binary (Vs\ ~ OV) to 2~ complement 
(V.,:-,-= SV) (sec Table 0. 

Input/Output DBO-DB7 
Range Vss VoltageRange DataFormat 

ov Oro+ 1.25V Binary 
OV Oto+2.5V 
- SV ± 1.2SV 
-sv -tz.sv 

Binary 
2s Complement 
2s Complement 

Table I. Input/Output Ranges 

RANGE Range Selection Input. This is used 
with the Ys~ input to select the different 
ranges as per Tabk I above. The range 
~dectcd applies to both the analog 

RESET 

DB7 

tnput voltage of the ADC and the output 
voltage from the DAC. 
Reset Input (Active Low). This is an 
asynchronou~ system reset which dear::. 
the DAC register to all Os and dears 
the INT line of the ADC (i.e., makes 
the ADC ready for new convcrswn). In 
unipolar operation this input .c;ets the 
output voltage to OV; in bipolar operation 
it sets the output to negative full ~calc. 

Data Bit 7. Most Significant Bit 
(MSB). 

" 
7-11 DB6-DB2 
12 DGND 
!3 DHl 
14 DBO 
IS WR: 

16 cs 

17 RD 

18 ST 

19 BUSY 

20 INT 

21 CLK 

24 Yon 

RESET 6 

LCCC 

0 " z z > ;:> 
1 28 27 

TOP VIEW 
IN<>IIoScalel 

12131415161718 

H ~ ~ ~ I~ 

Data Bit 6 to Data Bll 2. 
Digital Ground. 
Data Bit I 

21ST 

Data Btl 0. Lea:-.t Stgmficant Btl d.SB). 
Wrne Input (Edge trigger~). This i~ 
used in conjunction with CS to write 
data into the DAC register. Data is 
transferred on the rising edge of WR. 
Chip Select Input (Active Low). The 
device is selected when this input is 
acnve. 
READ Input (Active Low). This input 
must be active to access data from the 
part. In the Mode 2 interface, RD 
going low starts conversion. h is used 
in conjunction with the CS input (sec 
Digital Interface Section). 
Start Conversion (Edge triggered). This 
is used when precise sampling is reqmred. 
The falling edge of ST starts conversion 
and drives BUSY low. The ST signal is 
not gated with CS. 
BUSY Status Output (Active Low). 
When this pin is active the ADC is 
performing a conversion. The input 
signal is held prior to the falling edge 
of BUSY (sec Digital Interface 
Section). 
INTERRUPT Output (Active Low). 
INT going low indicates that the con
version is complete. INT goes high on 
the rising edge of CS or RD and is also 
set h1gh by a low pulse on RESET (see 
Digital Interface Section). 
A TfL compatible dock signal may be 
used to determine the ADC conversion 
time. Internal dock operation is achieved 
by connecting a resistor and capacitor 
to ground. 
Analog Ground for the ADC. 
Analog Input. Various input ranges can 
be selected (see Table I). 
Positive Supply Voltage ( + SV). 



68008 EXECUTION TIMES & TIMING DIAGRAMS 

Table 7-3. Effective Address Calculation Times 

Addressing Mode 

Data Reg1ster D1rect 

Address Reg1ster lJ1rect 

IAnl Address Reg1ster lnd1rect 

I Ani+ Address Reg1ster lnd1rect w1th Postmcrement 

I Ani Address Reg1ster lnd1rect with Predecremenl 

diAn! Address Reg1ster lnd1rect With Displacement 

diAn, 1xl* Address Reg1ster lnd1rect Wl\h Index 

xxx W Absolute Short 

xxx l Absolute long 

dl PCI Program Counter With D1splacernent 

d(PC, IX) Program Counter With Index 

#xxx lmmed1ate 

Aeg1ster 

Memory 

"The Sllf.J of the Index rey1ster l1xl does not atfect el<ccut1on tome 

Byt• 

010/Q) 

010/01 

4(1/0l 

411/01 

6{1,0) 

1213/01 

1413/01 

12(3,01 

1413;01 

812101 

Table 7-4. Move Byte Instruction Execution Times 

Word 

010/0l 

Q{0/01 

812/01 

812/0) 

1012/0J 

1614/01 

1814/0l 

1614/01 

2416/01 

1614/Ql 

1814/01 

812/01 

long 

OW!O! 

010/0l 

16(4(0) 

16{4'01 

1814/0) 

24(6/0l 

2616/01 

2416/0) 

32(8/01 

2416/01 

2616/01 

1614/01 

Source l---ro;;;n-I"OA:;;n-T---;;IA:;;n;-1 -,----,-IA;;;n;;-1 ;-, -"f"'"'-"~i~~::::ii~:cn r---:d~IA;::n:;-1 -r;d;ciAC:n--:, ,::cl • .-r----::,:::-,-:-.W;o--,--,-,--c.L:-1 
Dn 8{2!01 8U/Ol 1212/11 1212-11 12(2,11 2014/11 2214'11 2014111 2816/11 

An 812/01 812 1(]) 1212/11 1212111 1212/11 2014111 2214!11 2014111 2816111 

IAnl 1213/01 1213/UI 161311\ 16{3'11 16!3'11 241511) 2615/11 24I'J 1 11 3217'1~ 

iAn!+ 1213101 1213101 1613 111 1613/ II 1613/11 24lb, 1 I 261b/ 11 2415, 11 3217/1\ 

-I Ani 1413/01 141310) 1813, 11 1813' 11 l8(31] J 2615, 11 2815' 1 I 2615/11 3417/11 

diAn\ 20I'JIOI 2018101 2415,11 2415-11 2415,11 3217 111 3417111 321!111 4019!11 

diAn, ll<l" 2215/01 221510) 2tW,,11 2615-11 2615/11 3417111 3617/11 3417,11 421911\ 

xxxW 2015/01 2015101 2415/11 2415-11 241b,11 32\/111 3417/11 321711 4019-11 

xxxl 2811/01 281701 3217'11 3217)1 321111 401911 4219111 4019'11 48i1L1) 

diPCI 201t:J,OI 2015-'01 2415!11 2415111 2415'11 3217,11 3411111 321! 11 4019111 

diPC, rxl" 2215!01 221'Jt0) 261511 2615-1 1 261511 3417/11 3617/11 3417'11 4219 111 

lxxx 1614/01 1614 01 2014/11 2014/ II 2014' i 1 28l611 I 3016/ 11 281fl 11 3618 '1) 

*The SIZe ot the 1ndex regiSter l1xl does not <:~fleet execu\IOf1tlrne 

Table 7-5. Move Word Instruction Execution Times 

Source l---ro;;;n-I"OA:;;n--,----,;IA:;;n;-1 -,----,-IA;;;n;;-1 +.,---"r'"'-"~i~~:~::ii~:cn r---:d~IA;::n:;-1 -r.d,;IAC::n-c, ;::C,I<' ,----,-.,-:-.W;:---,-,-,-.L,--j 
On 8(2/01 812/01 1612121 1612,?1 1612/21 2414,2! 2614/2/ 2014i21 32\b/2! 

An 8{2101 8{2!0) 1612/21 1612'21 1612.'21 2414/2/ 2614i71 20/4'2i 3216'2/ 

IAnl 1614101 1614101 2414,21 2414,21 2414'21 3216121 3415121 3216,21 40!8-21 

IAnl+ 1614/01 1614/01 2414/2! 2414/21 :2414/LI 3216!21 3416121 3210121 4018/71 

-IAnl 1814/01 1814/01 2614/21 2614/21 2614121 3416,21 3216/21 3416121 4211::!/21 

diAn! 241610! 2416101 3.216121 3216 121 3216/21 4018,21 4218/LI 4018121 48110121 

diAn, 1xl" 2616/0l 2616/01 3416 21 3416121 3416/21 4218121 4418/2) 421&'./J 5011012,1 

XXX W 2416/01 2416/0) 3.216 121 3216/21 3216/21 4018121 42(8/21 4018,2) 48110t21 

Xxx l 32!8101 3218/0J 401812) 4018/21 4018/21 48110/21 50110/21 48110/7) 56112
1

21 

diPCI 2416/01 2416/01 3216121 3216/21 3216121 4018121 4218121 4018/21 48110/21 

diPC, 1xl" 26(6/0) 2616/01 3416/21 3416121 3416/21 4218/21 4418/21 4218/21 5011012) 

#xxx 1614/01 1614/0J 2414/21 2414/LI 2414121 321612) 3416/21 3216/21 4018/21 

*The s1ze of the Index regiSter l1xl rloes not alfect execut1on t1rne 

Table 7-7. Standard Instruction Execution Times 

Instruction Size 

AUD 

AND 

CMP 

DIVS 

OIVU 

EOR 

MULS 

MULU 

OR 

SUR 

NOTES 

l_onq 

8yte 
Word 

I ong 

Byte 
Word 
Long 

13)1te 
Word 

Lung 

B)lte 
Word 

long 

Byte 
Word 
(Oflg 

Adrl etfect1ve addresscalcul<:~tlon t1me 
lndlcate<;mflxlmumvfllue 

op <ea>, An 

12!2'01+ 
1017/01' * * 

1012101 + 
1012101-> 

1212,01 I 

1012,01-> .. * 

op <ea>. On 

812/W I 

812101+ 
1012'01 + .. * 

812/01 + 
812 101. 

1012/01+** 

812/01 + 
81?101 t 

1012/Ql+ 

16212!01+ * 
14412/01 + * 

8121011 * * * 
812101 + .. * * 

1212/0i+ * .... 

7412/0l + * 
7412!0!+ * 

81210) + 
812101+ 

1012101 + ** 

812/DI -1 
812'01-1 

1011 101 + ** 

opDn, <M> 

1212;1) + 
1612/71+ 
2412/41 + 

1212, 11+ 

1612'21+ 
2412/41 + 

1212/11+ 

161lf2!+ 
241214) f 

1212111 + 

'61212)1-
2412t41. 

1212/11 + 
1612121+ 
2412/41-t 

The hase t1me of 10 r.lock per10rls 1~ 1nneascd to 12 1! thE> effect1ve address mode IS reg1ster direct or 1m 

Only avdildble effective address n1ode IS di.i\d 
rJIVS DiVU Thl' drvfde dlgor1thm .!Sed by' thf' lesC>Ihan 10% cflffercncP. betwPell the hestJnd 

MUI::, MULU rewmes42 -1- 2nclochwhere n IS()P.IIncd:Js 

<cd> With i'! zero JS the MSB, n ·~ thp resultc~nt numb+"• ot 10 or 01 rilttcrrJs 1n 

Table 7-6. Move Long Instruction Execution Times 

Destination 
Source On An (An) (Anl t (Anl d(An) d(An, ix)• xxx.W xxx.L 

On 812/01 812101 2412!4) 2412/41 2412/41 3214141 3414141 3214-41 4016141 

An 8!2.'01 8!2;01 2412/41 241214) 2412141 3214 '4) 3414141 3214/4! 4016 41 

IAnl 2416/01 2416/01 4016/41 4016141 4016 141 4818!41 5018/41 4818141 56110141 

!Ani • 2416/01 2416/01 4016141 401614) 4016,41 4818/41 5018-41 4818141 56(10,41 

!Ani 2616/01 2616/01 4216141 4216/41 4216 141 5018/4) 5218141 5018141 58110/4) 

diAnl 3218/01 3218/01 4818141 4818/41 4818/41 56110/41 58110141 56110,41 64112 41 

diAn, 1xl * 3418/01 3418/01 5018/41 50(814) 5(1(814/ 58110,41 60110/4! 58110/41 66117 '41 

XXX W 3218/01 3218101 4818/4) 4818/4) 4818 41 56110/4) 58110/4) 56110,41 64112,4) 

xxx L 40110/01 40(10,0! 56110141 56110/41 56110141 64112,'41 66112/41 64112141 72114'41 

diPCI 3218/01 3218/01 4818/41 4818/41 4818/4) 56110/4) 58110/4) 56110/tll 64(12141 

diP(, 1xl* 3418/01 3418/0) 5018/41 5018141 5018/41 58110/41 60110141 58110/41 66112/41 

lxxx 24(6/0J 2415/01 4016141 4016/4) 40{5/4! 4818/41 5018/41 4818/41 56110/4) 

*The s1ze ot the 1ndex register l1xl does not affect execut1on t1me 

68008 timing data: 8 I MJ.:-' hit microrn · · 'Ssor 
reproduced with permission of Motorola Semiconductor Products 

Inc. ' 



Table 7-8. Immediate Instruction Clock Periods 

Instruction Size op#, Dn opi,An op#, M 

Byte 1614/0) 2014/11+ 

ADD I Word 1614/01 2414/21+ 

Long 2816/01 40{6/41+ 

Byte 8{2101 1212111+ 
ADDO Word 812/01 1212/01 1612/21+ 

Long 1212/0J 1212/01 2412/41+ 

Byte 1614/0) 2014/11+ 

AND I Word 1614/0) 2414/2) +-

Long 2816/0l 4016/4) + 
Byte 1614/01 1614/0l+ 

CMPI Word 1614/01 1614/01 + 
Long 26(6/0J 2416/0) + 

Byte 1614/0) 2014/11+ 

EORI Word 1614/0l 2414/21+ 

Long 2816/01 4016/41+ 

MOVEO Long 812/01 

Byte 1614/01 2014/11+ 

ORI Word 1614/0J 2414/21+ 

long 28\610\ <101614\ "r-

Byte 1614/0l 121211)+ 

SUB I Word 1614/01 16(2/21+ 

Long 2816/01 2412/41+ 

Byte 812/01 2014111+ 
SUBO Word 812/01 1212/0l 2414/21+ 

Long 1212/0l 1212/0) 40(6/4) + 

+add elfect1ve address calculatiOn t1me 

Table 7-9. Single Operand Instruction Execution Times 

Instruction Size Register Memory 

Byte 812/01 1212111+ 

CLR Word 812/01 1612/21+ 

Long 1012/01 2412/41 + 

NBCD Byte 10{2!01 1212111+ 

Byte 8\2/0\ 12{2!1\ + 

NfG Word 812/01 1612/21+ 

Long 10{2/01 2412/41+ 

Byte 812/01 1212/11+ 

NEGX Word 812/01 1612/21+ 

Long 10(2/01 2412/41+ 

Byte 812/01 1212/11+ 

NOT Word 812/01 1612/21+ 

Long 1012/01 2412/41+ 

Byte. False 812/01 1212/11+ 
Sec 

Byte, True 1012/01 1212/11+ 

TAS Byte 812/01 1412/11 + 

Byte 812/01 812/01+ 

TST Word 812/01 812/01 + 

Long 812/01 812/01 + 

+add effect1ve address calculation t1me 

Table 7-10. Shift/ Rotate Instruction Clock Periods 

Instruction Size 

Byte 
ASR, ASL Word 

Long 

Byte 
LSR, LSL Word 

long 

Byte 
ROR, ROL Word 

Long 

Byte 
ROXR, ROXL Word 

long 

+add effect1ve address (.alculat1on t1me 
n1Sthesh1ltcount 

Register Memory 

10 + 2nl2101 
10 + 2nl2/01 1612/21+ 
12 + 2ni2/0I 

10 + 2ni2/0I 
10 + 2nl2iOI 1612/21 + 
12 + 2ni2/0I 

10 + 2ni2/0I 
10 + 2ni2/0J 1617121+ 
12 + 2ni2/0J 

TO+ 2ni2/0I 
10 + 2ni2/0I 1612/71+ 
12 + 2ni2/0I 

Table 7-11. Bit Manipulation Instruction Execution Times 

Instruction S1ze 
Dynamic Static 

Reg1ster Memory Reg1~ter 

Byte 12121111 
BCHG 

Long 1212/01* 2014/01 .. 

Byte 1212!111 
BCLR 

Long 1412101* 2214/01* 

Gyte 1212•11+ 
RS[T 

Long 1212/01* 2014/01* 

Byte 812:01+ 
BlST 

long 1012/0J 1814101 

+addetlectlveaddresscalculatlon 11me 
4 irldlcatesmaxllllumvalue 

Table 7-12. Conditional Instruction Execution Times 

Memory 

2014111 + 

2014'111 

2014111 t 

1614 01 +-

Instruction Displacement 
'Trap or 'Branch 'Trap or 'Branch 

Bee 

BRA 

BSR 

DBcc 

CHK 

TRAP 

TRAPV 

Byte 

Word 

Byte 
Word 

Byte 

Word 

CC True 
CC False 

-1 add eHect1vP address calculation t1me 

"md1catesmax1murnvalue 

Taken Not Taken 

1814'01 1217t0l 

1814101 2014,0! 

1814/01 
1814101 

3414/4} 

3414/4) 

2014 1(]1 

1814/0l 2616,()1 

6818/61+ .. 1412'01+ 

6218/61 

66110/6) 8CJ 01 



Table 7-13. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 

Instruction g,ze (Ani (Ani+ I Ani d(Anl diAn, J)(l* )()()(w )()()(.L diPCI diPC,I)()* 

JMP 1614 Ul 1814 ()I 2214 l)J 1814 ,}1 2416 Ul 1814 (]1 22~4 :)1 

ISR 3214 41 3414 41 3814 ·11 3414 41 4016 41 3414 41 3814.41 

L[A 81}()1 161401 2014 \li 161401 2416 l'i 161,1 111 2014 11 

~ 
2411 41 3214 41 3614 4 1 32144 4016 41 3214·1 3614 41 

Word 24 1 Bn 24 +8n 32 IBn 34 IBn 32+8n 40+ Bn 32+8n 34 +Bn 
MOVfM l()tLn.l)) 'h- 2n ~~ 1B+ 2n (]1 1rl•Jri1!1 11f11n"OI _'CJ•cuUI lfl+)'l()l l!:l·2flil 

M~R Lonq 24 • 16n 24-r16n 32 ..-16n 34+ 16n 32 ~ 16n 40 1 16n 32 t 16n 34-+ 16n 
lh 1 •1n U1 '0 1 'lil •)I iM+Jn()• 18-+4n0' 18•41101 lil-+4r•<ll R··ln'l' IIH . ..1-r•ll'• 

vvorll 16 18n 16r8n 24 + Bn 26+8n 24 t8n 32+8n 
MO\IfM 14 )n! !4}n! 15 .!n' :o:>nl b Jnl !:!)Ill 

R~M lorlq 16 ..- 16n 16t16n 24t16n 26 + 16n 24..-16n 32-+ 16n 
11(4r11 144nl 1fi4n' lh•4n! •tl4nl lb4nt 

111s the numb<'r of 10 move 
* I~ thp SIZC of tfnc regJO~tPr I IX) dOe'S 110t d))prt thf' lfl<;truCtiOfi"S 

Table 7-14. Multi-Precision Instruction Execution Times 

Instruction Size op On, Dn op M, M 
Byte 8(2:01 2214/11 

ADDX 812.'01 50(6/21 
Long 1212'01 58110.41 

Byte 1614·01 
CMPM 2416·01 

Long 40110!01 

By<e 812/01 2214111 
SUBX 812/01 5016121 

Long 1212/01 58!10/41 
ABCD Byte 10!2/0! 20!4/1! 
SBCD Byte 1012101 2014/11 

Table 7-15. Miscellaneous Instruction Execution Times 

Instruction Register Memory 
ANI)I to CCR 3216'01 

AND! to Sf\ 32(6!0) 

EORI to CCR 3216·01 

tCJRI to SR 321610) 

FXG 10\7:01 

EXT 811/0) 

liNK 3214 41 

MOVE to CCR 1814'01 

MOVf to SR 18WOI 1814,01 f 

MOVE: from SH 1012·01 1617"21+ 

MOVE to USP 812101 

MOVf from L!Sf' 812 01 

NOP 812"0! 

Of\ I to CCR 3216101 

Ofil to :,R 321b/Ui 

RESFT 13612 101 

RTE 40110"01 

RTR 40110/01 

Rl S 3218"\J) 

STOP 4(010! 

SWAP 812 01 

UNLK 2416.'01 

Table 7-16. Move Peripheral Instruction Execution Times 

Instruction Reg1ster -- Memory Memory -- Regrster 

Long 
MOVf-P 

Word 2414 121 2416.1)1 
321414) 3218.'0! 

+ ildd ellectovP iidflrE''>'> 1 c~lc.uiJ\IUn t1mt_~ 

Table 7-17. Exception Processing 
Execution Times 

me f1rst sampled as negated to when mstructlon 
execution statts 



8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES 
I Vee~ 5.0 Vdc ± 5%. GND ~o Vdc; T A~ TL to TH. see Figures 8-6 and 8-71 

,---,----------------------------------,---,~8~M~H,-,~10~M~H~, ,---

N"m 
Clock Pertod 

Clock Wtdth Low 

Clock Wtdth Htgh 

Clock Fall rtme 

Uock Rtse Ttme 

Clock Low to AdfJress Val•d 

Charactensttc 

6A Clock Htgh to FC Valod 

Clock Htgh to AddreS'>, Data Bus Htgh lmpedonct.i IMoxtmuml 

Clock Htgh to AddrPSS, FC lnvaltd IMtmmuml 

gl Clock Htgh to AS, DS Low 

11A27 Ff Voltd to AS. OS Low Rt,dl AS I ow tWcrtel 

121 Clock Low to AS OS Htgh 

u7 1\S, OS Htgh to Arldre<;s 'f-C lnvaltd 

14?,5 AS, OS Wtdth low IReadi/AS Low IWrttel 

14A2 OS Wtdth I ow IWrttel 

16 Clock Htgh to lontrol Bu<; Htgh lmpednnce 

172 AS, OS Htgh to R 1 W Htqh tReddl 

181 Clock H1yh to RtW Hrgh 

201 C:lor.k H1gh to RiW Low 

20A6 AS Low to RIW Valid IWntPI 

212 Addres;, Valrd to HIW Low rwrotcl 

211\2,7 FC Vc1l1d to RtW Low IWrrtel 

i7T H/W Low to OS (_ow IWr1tel 

L:l Clock Low to DatCJ Out Vahd IWrllel 

25? AS OS Hryh to Data Out lnv,11id IWrltd 

26 Data Out Val1d to OS Low IWr1tel 

275 Data In to Clock Low I Setup T1rrw on Ht>acJI 

282,5 AS OS Hrgh to DTACK H1gh 

29 AS, OS H1yh to Data In lnval1d iHold Trrnro on RPacJI 

Jt2.5 DT ACK Low to Data Valrd !Asynchronous Setup I 1rne on Head) 

12 HALT and RESET Input TrctnSIIIOn lrme 

33 Clock H1yh to RG Low 

35 RR Low to BG Low 

3/ BGACK Low to BG HISJh 157 f'1n Vf'rs1on Only! 

37AY BGACK low to BR H1gh 152 Pm Ver<o1on llnlyl 

Symbol Mm Max Mtn Max Untt 

175 ~XJ 100 SOO 

ICL/\V 70 (j() 

ICHFC\/ 70 bO 

tc HAlJ/ flO iO 

IC:HAf-1 

IFCVSL fill 50 

1SHAHI '31J 20 

t[)SL 140 9S 

ICHlL 8U 7() 

ICHRL 4() 40 

tASHV liJ 20 

tSHLlCII 'JD 2C 

toosL 3':. 70 

t[)ICI Ei W 

tSHDII 

tSHBCH 

tOAI Dl fh 

tRHr 100 70\l 

tlHGL 4U 411 

IEJRLGL I ~l 90 n~ I r, flO no. Uk~ 
t:Jh r3b 

tHHHCH l :J 90 ns l 'J IJO liS [ C•k Per 
+ 1 h I J ~) 

l(iAI CiH 1 '-' 90 n~ 1 'J 80 "" (,~ p," 
~ l 5 ' l "i 

IGALBRH 2U 211 l'J 

1!l BG Low to Control, Addres'o DCJta-=B~c':_H_rg"--h--lm-'pCc:.:.c''-cc.:.Cc_rA_S:__IIr~yh_'_+-c'Geci_cZ--+-,--;-+3-rt--+-c-:c+-/U--+c;;-c=-l 
ci~J El"t. V'v'rdth High tc,H l ,, I Cl~ F'r'r 

41 Clock Low to r T rans1t1on teL~ 1 

42 E OtJtp11t RI\Pand l-alll1me Tf::r f 

44 AS, DS H•gh to VPA H1qh tSHVPfl 120 'JIJ 

68008 TIMING 

8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES (Continued) 
1Vcc~50Vdc+5% GND~OVdc;TA~TLtoTH seeFigures8-6and8-71 

8 MHz 10 MHz 

Num. CharacterrStiC Symbol Mrn Max Min Max Unit 

45 f 1 ow to Control Al!mesc, Bu~ lnvCJI1cl 11\ddri''>S Hold T1md 'I::LCAI 30 10 

40 BG/\CK W1dth Low ibL P•n Vrorsron Only) tGAL 1 b 1 5 Clk Per 

4/5 A~Vfl( 11ronou> Input Setup l1me lASI 10 10 

483 RfHH Low to DT/I.CK I ow lBE:.LDAL 20 20 

'SHEL 80 80 flO 80 

tEH 4SCJ ::!SO 

bl rwlcJ\hLow I[L 700 550 

')3 liock H•yh to DiJI:l Cl11t lnvillrO tCHOOI 0 --

tfLDOI lO 20 

':Jb R W to Do\d f~us lmpedc~r11 P Drn,en tHLDBD 30 20 

5f34 HALT RESt r Pul~e W1dtil tHRPW 10 tO Clk Prr 

57 BClACK H1qh 1c! Crmtrol 811c, Drrvt->1' 1')2 P1n VerSIOn Only! tGABD 1 'J 15 Clk Prr 

hBfl BCl H1gh to rm11rol Clu~ Orrv•'rl IGHBD 1 'J ClkPer 

NOHS 
1 ror a loddl 1q ldpcir 1t<lrr~ ,. ol lr'<o" th,on 01 l'fllldl tu bCJ prcofdrCHis, sutltrCKI b nanosPcorHIS from thr• vCJI\,eS grven 1n iht>~P UJIIJIIlll'> 

A(ILJcil iJI'!)I'fii 1S 1!11 

II f4/ IS Siltr>frr'd 101 l"JO'.h b<c () nanost>cond<> 
100 mrllrsecond~ to allow stobri,NIIIOn of lHI r·h1p crru11try After lht> 

c,yc,tr'fTI IS pOWI"ICd Up, #bb lilP W~lpm 

:-, 11 the ,lc,ym hronocJ:, •.l'tup t1rT'P 111471 rr·qurrrilHmh .-1rr~ Silt1sfrcd. low to dilliJ ~ctup t1rne 1#311 rrqu•rPmPnt ran br 19 

nor~CcJ dntil only Silt,sfv th<c data 1n to clock low setup t1rnr• 1#271 for th•' tollowrng cyciP 

Wh,_.n ,rnrJ H c~rr· ••qtJdily lodrkd It )IJ'\,1, ~ubtrar;t 10 nano~ecomls from ttu~ vCJiuPs "' thpsc· column<> 

,Jccurtrrsr 
tJCtWPI'I' :!18 fi~OilOJ 

on next tall111q edgP ot !'lock 



These waveforms should only be referenced 1n regard to the edge-to-edge measurement of the t1m-

1ng spec1f1cat1ons They are not 1ntended as a funct1onal descnpt1on of the mput and output s1gnals 

Refer to other funct1onai descnptrons and then related d1agrams for dev1ce operatiOn 

Figure B-6. Read Cycle Timing Diagram 

These waveforms should only be referenced m regard to the edge-to-edge measurement ol the tJm

mg speC1!1cat1ons They are not 1ntended as a tunct1onal descr1pt1on of the mput and output S1gnals 

Refer to other tunct1onal descr1pt1ons and their related d1agrams tor dev1ce operat1on 

Figure 8-7. Write Cycle Timing Diagram 



!iillD~tiC!i FULLY ENCODED, 9046 x N, RANDOM ACCESS 
WRITE-ONLY-MEMORY 

25120 

DESCRIPTION 

The S1gnet1CS 25000 Senes 9046XN Random Access Write· 
Only-Memory employs both enhancement and deplet1on 

mode P-Channel, N-Channel, and neu(l) channel MOS 

dev1ces. Although a statiC dev1ce, a smgle TTL level clock 
phase IS required to dnve the on-board mult1-port clock 
generator. Data refresh is accomplished dunng CB and 

LH penods(11)_ Ouadn·state outputs {when appltcdble) 

allow expansion 1n many d1rect10ns. depend1ng on organ 

izat1on 

The statiC memory cells are operated dynamically to y1eld 

extremely low power rli~S1pat1on. All mputs and outputs 

are directly TTL compatible when proper Interfacing c1r· 

cuitry is employed 

Dev1ce construction is more or le~s S.O.S.(2) 

FEATURES 

• FULLY ENCODED MULTI-PORT ADDRESSING 

• WRITE CYCLE TIME SOnS (MAX. TYPICAL) 

• WRITE ACCESS TIME(3) 

• POWER DISSIPATION 10uW/BIT TYPICAL 

• CELL REFRESH TIME 2mS (MIN. TYPICAL) 

• TTL/DTL COMPATIBLE INPUTS(4) 

• AVAILABLE OUTPUTS "n" 

• CLOCK LINE CAPACITANCE 2pF MAX_(5) 

• Vee = +lOV 

• voo = ov ± 2% 

• VFF = 6.3Vac(6) 

APPLICATIONS 

DON'T CARE BUFFER STORES 

LEAST SIGNIFICANT CONTROL MEMORIES 

POST MORTEM MEMORIES (WEAPON SYSTEMS) 

ARTIFICIAL MEMORY SYSTEMS 

NON-INTELLIGENT MICRO CONTROLLERS 

FIRST-IN NEVER-OUT (FINO) ASYNCHRONOUS 

BUFFERS 

OVERFLOW REGISTER (BIT BUCKET) 

PROCESS TECHNOLOGY 

The use of S1~net1cs umque SEX{?) proces~ y1t'lds Vth 

(var.) dnd allows the desl~n{BI and product10n(9l of 

h1gher performdnce MOS cirCuitS thdn cdn be obt,Hned by 

competitor's techniques 

""Neu channel a .. vrc<!S enhance or deplete re<]ardle~• ol gate 

polarrty, erther srmo~ltaneously or r.H>domly Somenmes not 

2 ··s.O S · copyrrghted U.S Army Cornrn,.•ary 1940 

3 Not applicable 

4 You ran •omehow drrve these onputs I rom TTL, the merhorl 

5 Mea•urfl U 1MH2, 25mVac. 1 9pF on ser11H 

6 For the loiament•. what el•el 

FINAL SPECIFICATIONI10) 

BIPOLAR COMPATIBILITY 

All ddtJ dnd clock inputs plus appl1cable outputs will Inter 

face directly or nearly directly w1th b1polar CirCuitS of 

su1table charactenstiCS. In any event use 1 amp fuses 1n all 

power supply and data lmes. 

INPUT PROTECTION 

All term1nals are prov1ded With slip-on latex protectors for 

the prevention of Voltage Destruction. (PILL packaged de 

v1ces do not requ1re protection). 

SILICON PACKAGING 

Low cost si11con DIP packagmg is implemented and re 

liab1l1ty IS assured by the use of a non-hermetiC seal1ng 

techn1que wh1ch prevents the entrapment of harmful 10m, 

but wh1ch allows the free exchange of fnendly 10ns 

SPECIAL FEATURES 

Because of the employment of the Signetics' propnetary 

Sdnderson Rabbet Channel the 25120 will prov1de 50% 

h1gher speed than you will obta1n 

COOLING 

The 25120 1s easily cooled by employment of a s1x-foot 

fan. 1/2"' from the package. If the dev1ce fails, you have 

exceeded the ratings In such cases, more a1r IS recom 

menrled 

BLOCK DIAGRAM 

25120 

J You h.we d d•ny •norld SEX •sSrgne"L' EXtrd Secret 

process "One Shovel Full to One Shovel Full"". patentB<l 

bv Yagura. K~sh~ool•. Converse ~nd AI Ctrca 1921 

See "Morlern Production Tachntques" by T Arrreta (nor yet 

Frnaluntrl we got a look H•om.,actual part• 

11 Coli"" bre .. k•and lunch hours 

12 Due ccedr! to EIMAC lor ln•P"atoon 

TYPICAL CHARACTERISTIC CURVES 
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APPENDIX C: Big Picture: Schematic of Lab 
606 Microcomputer 

RE"SE'T 
(tm keJpufJ 
,----. 

INTERRUPT 
LOGIC 

STEP/RVf..J 
f!n_ k~!Jf!..lcl) 

+ 

+ 

3't 

+!; 

I 

Voo 

C.L-K 

CPU 
b8008 

+ 

tok 

DATA DISPLAY (Vee "7, GMD~(,\ 
( H'P s-oe~-73~o - 4 '"":il'd) 

Figure N18.1: Lab Microcomputer schematic: left side 
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Big Picture: Schematic of Lab Microcomputer 607 

CPU ADDRESS BUS 

' CPU DATA BUS D¢) 07 

+ 141 13 11 10 91 sl " 
24
+f 

~ RANGE \0¢ Dl D2 03 D't D5 IX 07) Vop ~ 

w RESET Vs5 ;.r !pF 

~ cs DIG GIVO~ 

nt ll I' I . >l r -----"\ r- - - - - - ? • I I ~~ 2 "it. "" ~~ ~on!~t~~ ~YIN A./D ,__ L-.. D/A VolTT,......__I~!,2.~~) ·o~ 
lNl'ORT2 .......!{ RD 

~.3 3 -~ Iii START CONV I ATV75'" I 
~ '' I vI .,-; I 

Hc1~ not {1Xl: susv 
used l~ INT 

'2.1 CLK 
ADC 
GIJD 

2+ 

: comb1ne<l : 
1 AD</DAC 1 DAC. 

Gi'ID 

1 

WR ~ OUTI'ORT2. 

Figure N18.2: Lab Microcomputer schematic: right side 

AIS 



608 APPENDIX D: PINOUTS 

TRANSISTORS 

~ io-2Zo: 

ScR. 

i<AG 

LINEAR IC 's 

h'liniDii': ~ 

~ 
T0-220; 

HI' 51\ 

~ 
Rf I 4NOS 
HTP 5NO{, GpS 

~ T0-16: 

~u.S. lzN3~s-el 

TRIG 7 DIS 

OUT b THRESH 

f(J ,,_,, 
m~ 
DSGH~ 

G Dr c::Y£:QIJ 
s 

mincDII': liilJ 
[EIJ 

(.LJ< R 2 7 v+ 

~~t~ 3 G AGND 

GNDD" 8V+ 

RESET 5 CoNnOL 

CLko• BrN 

v.. our 

mincDil': ~ 

DIP: ffi}] 

miniDI1': ~ 

'~ 5~ ·-< ,~' ,.~' 
2 4 7 12 15 

'---y----1 
3 NPt-J's 2 PNP's 

leA 3o%l 1~-p·,, DIP (s"bstrde, pi" 11.) 

1b 15 l'f 13 

@ 
I 

N.C. 

TO- 92: 
j?SLOS"J 

11 lo q 

'r 5 6 7 
An<io3 s..,,tch 



PINOUTS 

DIGITAL IC,s= GATES 

7'fHCT02 NOR 

7'1- HC 0'1- NOT 
7'1- f.IC I '1- Schmdt 

Tn39er 

l'f t3 12 11 JO f 3 
), j I ), I I I 

•5 CUI D 
v s Q Q 

2 

) 7'r~C7'r 

• CiR D s Q Q GilD 
I ! ' r I I I 
L2]'f56'( 

74- XX 7'1- Dual D flop 

7411Cl75 

I I 
l z 3 'r 

I 
f 

I I 
7 s 

74- LS 00 NAND 
?'fHCTOB AND 
7'1- f.ICT 32. OR 

7'1-f.ICT 10 NAND 
7'1- HCT 27 NOR 

74- HC125 
3· Stat• 8uffer 

12 11 J.O "! 
I 

7'1- XX 112 Dual :J·/{ Flop 

20 11 1f 17 16 15 l'f 13 12 11 

1 l '1- 5" {, 7 I 

609 



610 PINOUTS 

DIGITAL rroni.) &. INT£f..FACE 

16 15 J.'f 13 12 11 10 ? 

74-HC16l(J63 

1 z ] If 5 7 8 
7'f XX lb!/163 If -8;t Cwnfer 

•s c!N 

1 2 

u, 15 Jlf 13 12 tt to q 

v~ ':• p·.,~~ ~:·' 9' 
Q, &ND 

J_ z 3 'f 5 6 7 a 
17. S<•J<. B<n«') Coo.rrfer 

10 ]!; 

Qo 

74-LS 'fb9 

3 1'- 6 7 _Jp 

8-bif: Up/Down Covnter 

16 15 1'1- 13 12 1.1 10 9 

12.3'1-5678 
1-of- 8 Dee-oder 

IS N 13 12 

1 2 3 't 5 

Odd/ 3- sfafe 

7 8 9 lC 

1 16 

2. 
¢e ... p 15' o .. t 

3 ]If 

'f 13 

12 

6 c 74- He 11 
4-04-6 

7 G ./1) 

8 GND '( 

Pha.se -Locked Loop 

J'f 13 

L6 15 H 13 12 

1 2 3 
8~bd:: Sc...c..c.o;!SS~ve -Approx..,ma.f,on /~ej:sfer 

2'+ 23 22 21 Zo 19 18 17 16 15 l'f 13 16 1-' 11' 13 12 11 ]0 

+Ve~ CS 

AD 7569 
ADS 58 

1 2 3 'f 5 6 7 

D/A 

9 

CE 

07 

8 



PINOUTS 

MISCELLANEOUS 
T C 's 

+5 

oooo 
0 0 
0 0 
0 0 0 0 

0 0 
0 0 rc. VISIBLE 

B c D blank 
(floats i!;actt'ue) 

2 
RC. 

IMC.IY08] To 4 

J_ 2& 
l. 2ry 

3 \'C Vee 
'f :'.!2 WE* 
5 .\ 7 CS2 
6 ·\6 A8 

\5 A9 7 ·\4 All 
\3 OE* 

9 A2 AlO 
10 

\ [ CSl* 
\t) D7 II 18 DO D6 

12 17 DI DS 
13 16 02 D4 
I~ G~D DJ 

(la6el) 
RAM 811•8 

16 lf: 

v,c D7 

1 2. 

Ke.'Jpad 

1 
2 
3 
'f 
5 
6 
7 
8 
9 

10 
II 
12. 

13 
l't 
15 
/6 

17 
18 
19 
2.0 
2.1 
2.2 
23 
2'f 

I I 
Vcc o~t 

FSC-3 
N.c. GilD 

I \ 

Cr~sfal Oscillator 

13 12 q 

D6 Ds D'l 'Yo 
Adr /(1./R 
C:lk 

Ke.~pad 

.3 'r !> 6 7 g 

Cable DIP CO/JI'Iedi!Jr 

A3 A;. lf-8 
A't Ar '+-7 
As A¢ 'f6 

A~ FC(/5 lf.5 
Ary FC 1 'fif 
A~ FC2 'f3 
Aq IPL2.f¢ -4-2 
AlD IPL1 - '+-1 
A" BERR - '+-0 
A,z )6ms] VPA -3q 

A,3 E 3S 
A,'+ RESET -37 
'Icc IIAL T -36 
A,s GND 35 
GND CU< -3't 
A,6 BR 33 
A,1 86 -32 
A Is DTACK -31 
A,q R/W 30 
07 DS 29 
06 AS -28 
Ds 00 27 
D,. D1 26 

03 D;. 25 

)-<processor-

611 

u A2 
A4 AI 
AS AO 

A6 FCO 

~' FCl 

AX FC2 
A!..: IPL2Jil" 
A!O !PLJ• 

.-\11 BERR• 
~,_ VPA" 

Al3 E 
\J.; RESET 
Vcc HALT• 
Al5 c:-;o 
!J.'\D CLK 
\~6 BR" 

A 1 i BG" 
AJX DTACK• 
-\.19 R/W" 
D7 os• 
06 AS" 
D> DO 

D• Dl 
DJ D2 

(I a.hel) 
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INDEX 

This index directly covers only class notes. It reaches Labs and Worked Examples 
indirectly: topics treated in labs and worked examples are discussed in the class notes for 
the same day. So, to find the lab that treats the bipolar current source, for example, you 
would follow the index to Class 4, then look to Lab 4. There you would find the current 
source circuit that you build in the lab. 

A bus ......................................... 375 D 
A ("open-loop gain") ............. 208 Butterworth low-pass ............... 44 dB: (decibels) 
AB ("loop gain") .................... 219 3dB point.. ..................... 39 
absolute addressing ................ 465 
AC amplifier .......................... 193 c 6dB/octave slope ........... 43 

DBF (instruction) .................. 500 
access time ............................. 379 CALL operation ............. 480, 498 decoder .................................. 460 
acquisition time (S & H) ........ 249 capacitance (PET: stray) ........ 245 - I/0 decoder ............... 461 
"active low" ........................... 288 -meter ....................... 350 deMorgan's theorem .............. 287 
active pullup .................. 292, 320 capacitor .................................. 32 depletion mode ...................... 141 
active rectifier ........................ 188 cascading (counters) .............. 346 differential amplifier .............. 124 
address ................................... 4 34 cascode .................................. 129 differential gain ..................... 126 

- decoding .................... 459 ceramic capacitor ..................... 32 differentiator. ..................... 32, 35 
addressing modes ................... 462 charge injection ..................... 249 - op amp version ......... 187 

- immediate ................ .463 clear ....................................... 329 digital (vs analog) .................. 283 
- absolute ..................... 465 -sync vs async ............ 329 diode 
- indirect ...................... 466 CMOS -circuits ...................... 65[[ 

- moving pointer ......... .499 - analog switch ............ 246 -I vs V curve ................. 65 
aliasing ................................... 408 - digital gate ................ 290 direct memory access 
amplitude resolution ............. .402 combinational logic ............... 287 (DMA) ............................... 435 
analog switch ......................... 245 common-emitter amplifier ....... 88 distortion ................................ 104 
assertion-level symbols .......... 288 common-mode gain ............... 126 droop 
autovector (interrupt) ............. 538 comparator -generally ....................... 7 

-analog ....................... 210 - sample & hold .......... 248 
-digital ........................ 435 dropout voltage ...................... 269 

B complex plane .......................... 42 DS* (data strobe*) 

B ("fraction fed back") ........... 208 
balancing resistive paths ........ 191 
BG* (busgrant*) 

(68008 signal) ................... .438 
bias current (op amp) ............. 190 
biasing ...................................... 86 
binary ..................................... 283 

- digit ("bit") ............... 285 
-number ...................... 285 

binary search ................. .4ll, 413 

conditional branch ................. 482 
conductances ............................. 3 
counters 

-generally ................... 330 
-ripple ................. 330, 344 
- synchronous .............. 330 

"crowbar" overvoltage 
protection ......................... 271 

current amplifier ...................... 85 
current hogging ...................... 245 
current limit 

(68008 signal) .................... 434 
DTACK* (data transfer 

acknowledge ........................ 438 
dual-slope A/D ............. .411, 412 
dynamic RAM ....................... 378 
dynamic resistance .............. 7, 67 

DVM ......................................... 8 

E 
bit ........................................... 285 
bit test .................................... 482 
BJT ........................................ 148 
BNC cable ............................... 62 
Bode plot ................................. 40 
Boolean algebra ..................... 287 
BRANCH (68008 

instruction) ......................... 457 

- voltage regulator ....... 268 
-op amp ...................... l94 

current mirror ......................... 103 
current source .................... 33, 87 

-bipolar transistor ......... 87 
-FET ........................... 145 
-opamp ...................... l71 

current-to-voltage converter .. 172 

Ebers-Moll equation .............. 109 
Early effect ............................ 109 
edge trigger ............................ 327 

- vs level-sensitive ...... 328 
emitter follower ....................... 88 
emitter resistor as feedback ... 105 
encode .................................... 435 
enhancement mode ................ 141 



INDEX-2 

EPROM ................................. 378 

error size: 
A-D conversion .................. 407 

exceptions (68000) ................ 536 

F 
555 oscillator ......................... 214 

feedback 
-emitter resistor as ....... 105 

FET ........................................ 141 

field effect transistor .............. 141 

filters .................................. 32, 38 

finite state machine: see "state 

machine" 

flags ....................................... 481 

function codes ....................... .438 

"flash" A(D ............................ 412 

flip-flop .................................. 325 

floating input (logic gate) ....... 292 

follower 
- emitter follower .. 85, 87 

-as rose-colored lens ..... 85 

- FET source follower. 146 

-opamp ...................... 171 

Fourier 
-analysis ....................... 63 

- analyzer ...................... 64 

-components of 

square wave ............. 64 

frequency compensation ........ 220 

frequency domain .................... 39 

frequency multiplier ............... 418 

full-wave bridge rectifier ......... 65 

fuse rating ................................ 69 

G 
gm ........................................... 148 

1/gm ........................................ 150 

Golden Rules (op amp) .......... 168 

ground ...................................... 10 

grounded-emitter amplifier .... 104 

H 
hexadecimal display .............. 348 

high-pass .................................. 39 

half-wave rectifier .................... 66 

hold (sample & hold) ............. 248 

"hold step" ............................. 249 

hysteresis ............................... 212 

INDEX 

I 
IBMPC .................................. 434 

loss ........................................ 144 

illegal exception .................... 536 

immediate addressing ............ 463 

impedance .................................. 5 

-"looking" in a 

specified direction .... 87 

indirect addressing: 

see addressing 
inductor .................................... 37 

input port ............................... 435 

instruction register ................. 457 

integrator ........................... 32, 35 

- op amp version ......... 185 

interrupt ......................... 488, 535 

-mask .......................... 539 

intrinsic emitter resistance 

(rJ ......................................... 101 

inverting amplfier (op amp) ... 169 

J 
"jam" clear ............................. 329 

JFET (junction FET) .............. 142 

J-K flip-flop ........................... 330 

K 
Karnaugh map ....................... 323 

Kirchhoff's Laws ....................... 2 

keypad: explanation ............... 372 

keypad buffer ......................... 461 

L 
latch ....................................... 325 

LC ............................................ 43 

-resonant circuit ............ 64 

load function (counter) .......... 346 

loading (generally) ..................... 5 

log plot ..................................... 39 

loop gain (AB) ........................ 219 

low-pass ................................... 39 

M 
masking ................................. 483 

master-slave flip-flop ............. 327 

memory .................................. 377 

memory vs 1/0 ....................... 434 

613 

meter movement. ....................... 9 

Miller effect.. ......................... 127 

minimizing logic .................... 322 

MOSFET ............................... 142 

mylar capacitor ........................ 32 

N 
NAND ................................... 287 

-NAND latch .............. 325 

negative feedback .................. 166 

negative impedance converter 

(NIC) ..................................... 212 

n-channel PETs ...................... 143 

noise immunity ...................... 284 

noise margin .......................... 291 

non-inverting amplfier (op 

amp) ....................................... 169 

NMl: non-maskable 

interrupt ............................. 53 9 

non-volatile memory ............. 378 

NOR ...................................... 287 

NOT ....................................... 287 

Nyquist sampling rate ............ 407 

0 
offset current.. ........................ 192 

offset voltage ......................... 189 

Ohm's law ................................. 1 

ohms per volt ............................. 9 

one-shot ................................. 331 

open-loop circuits .................. 168 

open collector output. .... 292, 321 

open-loop gain (A) ................. 208 

oscillators ................................ 3 2 

output impedance ...................... 5 

- of current source ....... 112 

output L urrent limit 

- voltage regulator. ...... 268 

-opamp ...................... l94 

p 
parallel circuits .......................... 2 

passband .................................. 44 

passive pullup ........................ 292 

PC (two senses!) 

-IBMPC .................... 434 

-program counter.. ...... 457 

phase detectors ...................... 416 

phase-locked loop .................. 416 

- stability ..................... 419 



614 

phase shift. ............................... 40 
phasor diagrams ....................... 41 
polling .................................... 488 
ports (!!computer) ................. .435 
positive feedback ................... 210 
prefetch .................................. 457 
primary (transformer) .............. 69 
printed circuit... ...................... 565 
priority among 

interrupts ............................ 539 
probe compensation ................. 63 
program counter. .................... 457 
programmable counter ........... 34 7 
PROM .................................... 378 
PUSH (CPu operation) ........ .480 
push-pull .................................. 88 

R 
RAM ...................................... 378 
ramp ......................................... 33 
RC oscillator 

-opamp 
"relaxation osc." .... 212 

- IC version: '555 ........ 214 
re ............................................ 101 

- deriving ..................... ll3 
reactance .................................. 37 
rectifier ..................................... 65 
relaxation oscillator ............... 212 
reset ....................................... 329 
resistance ................................... 3 
return address ........................ .480 
ripple (power supply) ............... 68 
ripple counter ................. 330, 344 
roll-off of gain (op amp) ........ 194 
ROM ...................................... 378 
RoN (FET) .............................. 245 
rms voltage .............................. 68 
roll-off ...................................... 43 
R-2R ladder .......................... .410 
R/W* (68008 signal) ............. 434 

s 
sample 

-sample & hold ... 247,248 
sampling rate .......................... 407 

INDEX 

saturation 
-for FET ..................... 145 
- for bipolar trans ........ 245 

Schmitt trigger ....................... 212 
scope probe .............................. 62 
secondary (transformer) ........... 69 
secondary breakdown ............ 245 
sequential circuits .................. 325 
series circuit. .............................. 2 
setup time .............................. 344 
shift register ........................... 331 
signed condition 

(branch instruction) ............ 486 
68008 ..................................... 434 
slew rate ................................. 194 
slow-blow ................................ 70 
solder breadooard .................. 564 
stack ....................................... 479 

-pointer ....................... 479 
state machine ................. 331, 380 
status register ......................... 537 
stiff (voltage source) .................. 7 
"stopwatch" ........................... 349 
subroutine .............................. 480 
successive approximation ...... 413 
summing circuit (op amp) ...... 171 
sweep (function generator) ...... 64 
switch 

- FET vs bipolar .......... 245 
- bounce ....................... 326 

switching delays 
- analog switch ............ 249 

switching regulator ................ 272 
synchronous 

-circuits generally ....... 343 
-counters ............. 330, 345 

T 
T resistor configuration .......... 186 
temperature compensation ..... 107 
temperature effects ................ 106 
thermal shutdown .................. 270 
three-state output ........... 292, 320 
threshold 

-in Schmitt trigger ...... 212 
-in logic gate .............. 291 

time-constant ........................... 35 
time domain ............................. 39 

INDEX-3 

timeout.. ................................. 436 
times-ten rule of thumb ........... 61 
trace ....................................... 537 
tracking AID .......................... 413 
trade magazines ..................... 565 
transconductance (bipolar 
transistor) ............................... I 06 

-FET .......................... 148 
transistor (bipolar): 

first, simple views ................ 83 
transparent latch .................... 327 
trap ......................................... 536 
triangle waveform .................... 34 
tri-state (trademark of NSC) .. 292 
TTL ....................................... 290 
two's complement ................. 285 

u 
universal gate ......................... 287 

v 
vector (for 6800x 

'exceptions') .............. 540, 541 

VGS········································· 144 
voltage regulators 

- generally ................... 267 
-linear ......................... 272 
- switching .................. 272 
- three-terminal ........... 270 

VOM .......................................... 8 
VPA* (68000 signal) ............. 538 

V pinchoff •••··••••··••••···············•••• 148 

w 
Wien bridge oscillator ........... 215 
Wilson mirror ........................ 111 
wire-wrap .............................. 565 
word-sized output .................. 462 
worst-case analysis .................. 40 

z 
zin' Zout .................................... 40 
zener diode .............................. 66 
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